Suppr超能文献

血凝块的超弹性:弥合微观尺度与连续介质尺度之间的差距。

Hyperelasticity of blood clots: Bridging the gap between microscopic and continuum scales.

作者信息

Filla Nicholas, Gu Beikang, Hou Jixin, Song Kenan, Li He, Liu Ning, Wang Xianqiao

机构信息

School of Environmental, Civil, Agricultural and Mechanical Engineering, College of Engineering, University of Georgia, Athens, GA, 30602, USA.

School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, 30602, USA.

出版信息

J Mech Phys Solids. 2024 Sep;190. doi: 10.1016/j.jmps.2024.105750. Epub 2024 Jun 20.

Abstract

The biomechanical properties of blood clots, which are dictated by their compositions and microstructures, play a critical role in determining their fates, i.e., occlusion, persistency, or embolization in the human circulatory system. While numerous constitutive models have emerged to describe the biomechanics of blood clots, most of these models have primarily focused on the macroscopic deformation of the clots and the resultant strain-stress correlations without depicting the microscopic contributions from their structural components, such as fibrin fibers, fibrin network and red blood cells. This work addresses the gap in current scientific understanding by quantifying how changes in the microstructure of blood clots affect its mechanical responses under different external stresses. We leverage our previous published work to develop a hyperelastic potential model for blood clots, which incorporates six distinct strain-energy components to describe the alignment of fibers, the entropic and enthalpic stretching of fibrin fibers, the buckling of these fibers, clot densification, and clot jamming. These strain-energy components are represented by a combination of simple harmonic oscillators, one-sided harmonic potentials, and a Gaussian potential. The proposed model, which is , and continuous with a total of 13 parameters, has been validated against three datasets: 1) fibrin clot in tension, 2) blood clot in compression, and 3) blood clots in shear, demonstrating its robustness. Subsequent simulations of a microscopic blood clot model are performed to uncover mechanistic correlations for a majority of the hyperelastic potential's stiffness/strain parameters. Our results show that only one proposed term concerning fiber buckling needs further refinement, while the remaining five strain-energy terms appear to describe precisely what they were intended to. In summary, the proposed model provides insight into the behavior of thromboembolisms and assistance in computer-aided design of surgical tools and interventions such as thrombectomy.

摘要

血凝块的生物力学特性取决于其组成和微观结构,在决定其在人体循环系统中的命运(即阻塞、持续性或栓塞)方面起着关键作用。虽然已经出现了许多本构模型来描述血凝块的生物力学,但这些模型大多主要关注血凝块的宏观变形以及由此产生的应变 - 应力相关性,而没有描述其结构成分(如纤维蛋白纤维、纤维蛋白网络和红细胞)的微观贡献。这项工作通过量化血凝块微观结构的变化如何影响其在不同外部应力下的力学响应,弥补了当前科学理解中的空白。我们利用之前发表的工作,为血凝块开发了一个超弹性势模型,该模型包含六个不同的应变能分量,以描述纤维的排列、纤维蛋白纤维的熵拉伸和焓拉伸、这些纤维的屈曲、血凝块致密化和血凝块堵塞。这些应变能分量由简谐振荡器、单边谐势和高斯势的组合表示。所提出的模型是光滑的、连续的,共有13个参数,已针对三个数据集进行了验证:1)拉伸状态下的纤维蛋白凝块,2)压缩状态下的血凝块,3)剪切状态下的血凝块,证明了其稳健性。随后对微观血凝块模型进行了模拟,以揭示超弹性势的大多数刚度/应变参数的力学相关性。我们的结果表明,只有一个关于纤维屈曲的提议项需要进一步完善,而其余五个应变能项似乎准确地描述了它们的预期效果。总之,所提出的模型为血栓栓塞的行为提供了见解,并有助于手术工具和诸如血栓切除术等干预措施的计算机辅助设计。

相似文献

本文引用的文献

1
Tensile and Compressive Mechanical Behaviour of Human Blood Clot Analogues.人血凝块类似物的拉伸和压缩力学性能。
Ann Biomed Eng. 2023 Aug;51(8):1759-1768. doi: 10.1007/s10439-023-03181-6. Epub 2023 Apr 18.
4
Hyperelastic continuum models for isotropic athermal fibrous networks.各向同性无热纤维网络的超弹性连续体模型。
Interface Focus. 2022 Oct 14;12(6):20220043. doi: 10.1098/rsfs.2022.0043. eCollection 2022 Dec 6.
6
Preclinical modeling of mechanical thrombectomy.机械取栓的临床前模型。
J Biomech. 2022 Jan;130:110894. doi: 10.1016/j.jbiomech.2021.110894. Epub 2021 Dec 8.
10
Pathologically stiff erythrocytes impede contraction of blood clots.病理性僵硬的红细胞会阻碍血栓的收缩。
J Thromb Haemost. 2021 Aug;19(8):1990-2001. doi: 10.1111/jth.15407. Epub 2021 Jul 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验