School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China.
Water Res. 2017 Apr 1;112:236-247. doi: 10.1016/j.watres.2017.01.052. Epub 2017 Jan 30.
This study introduces natural occurring magnetic pyrrhotite (NP) as an environmentally friendly, easy available, and cost-effective alternative catalyst to activate persulfate (PS) of controlling microbial water contaminants. The E. coli K-12 inactivation kinetics observed in batch experiments was well described with first-order reaction. The optimum inactivation rate (k = 0.47 log/min) attained at a NP dose of 1 g/L and a PS dose of 1 mM, corresponding to total inactivation of 7 log cfu/mL cells within 15 min. Measured k increased > 2-fold when temperature increased from 20 to 50 °C; and > 4-fold when pH decreased from 9 to 3. Aerobic conditions were more beneficial to cell inactivation than anaerobic conditions due to more reactive oxygen species (ROS) generated. ROS responsible for the inactivation were identified to be SO > OH > HO based on a positive scavenging test and in situ ROS determination. In situ characterization suggested that PS effectively bind to NP surface was likely to form charge transfer complex (≡Fe(II)⋯OSOOSO), which mediated ROS generation and E. coli K-12 oxidation. The increased cell-envelope lesions consequently aggravated intracellular protein depletion and genome damage to cause definite bacterial death. The NP still maintained good physiochemical structure and stable activity even after 4 cycle. Moreover, NP/PS system also exhibited good E. coli K-12 inactivation efficiency in authentic water matrices like surface water and effluents of secondary wastewater.
本研究介绍了天然磁黄铁矿(NP)作为一种环保、易得且经济有效的替代催化剂,用于激活过硫酸盐(PS)以控制微生物水污染物。在批处理实验中观察到的大肠杆菌 K-12 失活动力学可以很好地用一级反应来描述。在 NP 剂量为 1 g/L 和 PS 剂量为 1 mM 的最佳条件下,达到了 0.47 log/min 的最佳失活速率,在 15 min 内实现了 7 log cfu/mL 细胞的总失活。当温度从 20°C 升高到 50°C 时,测量的 k 值增加了>2 倍;当 pH 值从 9 降低到 3 时,k 值增加了>4 倍。好氧条件比厌氧条件更有利于细胞失活,因为产生了更多的活性氧物种(ROS)。根据阳性清除试验和原位 ROS 测定,确定负责失活的 ROS 为 SO > OH > HO。原位表征表明 PS 有效地与 NP 表面结合,可能形成电荷转移络合物(≡Fe(II)⋯OSOOSO),介导 ROS 的生成和大肠杆菌 K-12 的氧化。因此,增加的细胞膜损伤加剧了细胞内蛋白质的耗竭和基因组的损伤,导致细菌的死亡。NP 即使在 4 个循环后仍保持良好的物理化学结构和稳定的活性。此外,NP/PS 体系在地表水和二级废水等真实水基质中也表现出良好的大肠杆菌 K-12 失活效率。