Suppr超能文献

使用本征正交分解法进行管道流动中的结构识别

Structure identification in pipe flow using proper orthogonal decomposition.

作者信息

Hellström Leo H O, Smits Alexander J

机构信息

Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA

Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA.

出版信息

Philos Trans A Math Phys Eng Sci. 2017 Mar 13;375(2089). doi: 10.1098/rsta.2016.0086.

Abstract

The energetic motions in direct numerical simulations of turbulent pipe flow at Re=685 are investigated using proper orthogonal decomposition. The procedure is extended such that a pressure component is identified in addition to the three-component velocity field for each mode. The pressure component of the modes is shown to align with the streamwise velocity component associated with the large-scale motions, where positive pressure coincides with positive streamwise velocity, and vice versa. The streamwise evolution of structures is then visualized using a conditional mode, which exhibit a strong similarity to the large-scale, low-momentum motions. A low-pressure region is present in the downstream section of the structure, and a high-pressure region is present in the upstream section.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'.

摘要

采用本征正交分解法研究了雷诺数为685时湍流管道流动直接数值模拟中的能量运动。该过程得到了扩展,以便除了为每个模态确定三分量速度场之外,还能识别压力分量。结果表明,模态的压力分量与与大尺度运动相关的流向速度分量对齐,其中正压力与正流向速度重合,反之亦然。然后使用条件模态对结构的流向演化进行可视化,该条件模态与大尺度、低动量运动具有很强的相似性。在结构的下游部分存在一个低压区域,在上游部分存在一个高压区域。本文是主题为“迈向大雷诺数下壁面湍流高保真模型的发展”的特刊的一部分。

相似文献

1
Structure identification in pipe flow using proper orthogonal decomposition.
Philos Trans A Math Phys Eng Sci. 2017 Mar 13;375(2089). doi: 10.1098/rsta.2016.0086.
2
Reynolds number trend of hierarchies and scale interactions in turbulent boundary layers.
Philos Trans A Math Phys Eng Sci. 2017 Mar 13;375(2089). doi: 10.1098/rsta.2016.0077.
3
Low-dimensional representation of near-wall dynamics in shear flows, with implications to wall-models.
Philos Trans A Math Phys Eng Sci. 2017 Mar 13;375(2089). doi: 10.1098/rsta.2016.0082.
4
Reynolds stress scaling in pipe flow turbulence-first results from CICLoPE.
Philos Trans A Math Phys Eng Sci. 2017 Mar 13;375(2089). doi: 10.1098/rsta.2016.0187.
5
Self-sustaining processes at all scales in wall-bounded turbulent shear flows.
Philos Trans A Math Phys Eng Sci. 2017 Mar 13;375(2089). doi: 10.1098/rsta.2016.0088.
6
Scaling and interaction of self-similar modes in models of high Reynolds number wall turbulence.
Philos Trans A Math Phys Eng Sci. 2017 Mar 13;375(2089). doi: 10.1098/rsta.2016.0089.
7
A statistical state dynamics approach to wall turbulence.
Philos Trans A Math Phys Eng Sci. 2017 Mar 13;375(2089). doi: 10.1098/rsta.2016.0081.
8
Statistical evidence of anasymptotic geometric structure to the momentum transporting motions in turbulent boundary layers.
Philos Trans A Math Phys Eng Sci. 2017 Mar 13;375(2089). doi: 10.1098/rsta.2016.0084.
9
Optimally amplified large-scale streaks and drag reduction in turbulent pipe flow.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Sep;82(3 Pt 2):036321. doi: 10.1103/PhysRevE.82.036321. Epub 2010 Sep 28.
10
A self-sustaining process model of inertial layer dynamics in high Reynolds number turbulent wall flows.
Philos Trans A Math Phys Eng Sci. 2017 Mar 13;375(2089). doi: 10.1098/rsta.2016.0090.

引用本文的文献

1
Prospectus: towards the development of high-fidelity models of wall turbulence at large Reynolds number.
Philos Trans A Math Phys Eng Sci. 2017 Mar 13;375(2089). doi: 10.1098/rsta.2016.0092.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验