Cossu Carlo, Hwang Yongyun
Institut de Mécanique des Fluides de Toulouse (IMFT) - Université de Toulouse, CNRS-INPT-UPS, 31400 Toulouse, France
Département de Mécanique, École Polytechnique, 91128 Palaiseau, France.
Philos Trans A Math Phys Eng Sci. 2017 Mar 13;375(2089). doi: 10.1098/rsta.2016.0088.
We collect and discuss the results of our recent studies which show evidence of the existence of a whole family of self-sustaining motions in wall-bounded turbulent shear flows with scales ranging from those of buffer-layer streaks to those of large-scale and very-large-scale motions in the outer layer. The statistical and dynamical features of this family of self-sustaining motions, which are associated with streaks and quasi-streamwise vortices, are consistent with those of Townsend's attached eddies. Motions at each relevant scale are able to sustain themselves in the absence of forcing from larger- or smaller-scale motions by extracting energy from the mean flow via a coherent lift-up effect. The coherent self-sustaining process is embedded in a set of invariant solutions of the filtered Navier-Stokes equations which take into full account the Reynolds stresses associated with the residual smaller-scale motions.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'.
我们收集并讨论了近期研究的结果,这些结果表明,在壁面约束的湍流剪切流中存在一整个自维持运动族,其尺度范围从缓冲层条纹的尺度到外层中大规模和超大规模运动的尺度。这个与条纹和准流向涡相关的自维持运动族的统计和动力学特征与汤森德附着涡的特征一致。每个相关尺度的运动能够在没有来自更大或更小尺度运动的强迫作用下,通过相干提升效应从平均流中提取能量来维持自身。这种相干自维持过程嵌入在一组过滤后的纳维 - 斯托克斯方程的不变解中,该方程充分考虑了与残余较小尺度运动相关的雷诺应力。本文是主题为“迈向大雷诺数下壁面湍流高保真模型的发展”这一特刊的一部分。