Baars W J, Hutchins N, Marusic I
Department of Mechanical Engineering, The University of Melbourne, Victoria 3010, Australia.
Department of Mechanical Engineering, The University of Melbourne, Victoria 3010, Australia
Philos Trans A Math Phys Eng Sci. 2017 Mar 13;375(2089). doi: 10.1098/rsta.2016.0077.
Small-scale velocity fluctuations in turbulent boundary layers are often coupled with the larger-scale motions. Studying the nature and extent of this scale interaction allows for a statistically representative description of the small scales over a time scale of the larger, coherent scales. In this study, we consider temporal data from hot-wire anemometry at Reynolds numbers ranging from Re≈2800 to 22 800, in order to reveal how the scale interaction varies with Reynolds number. Large-scale conditional views of the representative amplitude and frequency of the small-scale turbulence, relative to the large-scale features, complement the existing consensus on large-scale modulation of the small-scale dynamics in the near-wall region. Modulation is a type of scale interaction, where the amplitude of the small-scale fluctuations is continuously proportional to the near-wall footprint of the large-scale velocity fluctuations. Aside from this amplitude modulation phenomenon, we reveal the influence of the large-scale motions on the characteristic frequency of the small scales, known as frequency modulation. From the wall-normal trends in the conditional averages of the small-scale properties, it is revealed how the near-wall modulation transitions to an intermittent-type scale arrangement in the log-region. On average, the amplitude of the small-scale velocity fluctuations only deviates from its mean value in a confined temporal domain, the duration of which is fixed in terms of the local Taylor time scale. These concentrated temporal regions are centred on the internal shear layers of the large-scale uniform momentum zones, which exhibit regions of positive and negative streamwise velocity fluctuations. With an increasing scale separation at high Reynolds numbers, this interaction pattern encompasses the features found in studies on internal shear layers and concentrated vorticity fluctuations in high-Reynolds-number wall turbulence.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'.
湍流边界层中的小尺度速度波动通常与大尺度运动相互耦合。研究这种尺度相互作用的性质和程度,有助于在大尺度相干尺度的时间尺度上,对小尺度进行具有统计代表性的描述。在本研究中,我们考虑了热线风速仪在雷诺数范围从Re≈2800到22800时的时间数据,以揭示尺度相互作用如何随雷诺数变化。相对于大尺度特征,小尺度湍流的代表性振幅和频率的大尺度条件视图,补充了关于近壁区域小尺度动力学大尺度调制的现有共识。调制是一种尺度相互作用类型,其中小尺度波动的振幅与大尺度速度波动的近壁足迹连续成比例。除了这种振幅调制现象外,我们还揭示了大尺度运动对小尺度特征频率的影响,即频率调制。从小尺度特性条件平均值的壁面法向趋势中,可以揭示近壁调制如何过渡到对数区域中的间歇性尺度排列。平均而言,小尺度速度波动的振幅仅在一个受限的时间域内偏离其平均值,该时间域的持续时间根据局部泰勒时间尺度固定。这些集中的时间区域以大尺度均匀动量区的内部剪切层为中心,这些剪切层表现出流向速度波动为正和负的区域。随着高雷诺数下尺度分离的增加,这种相互作用模式包含了在高雷诺数壁面湍流内部剪切层和集中涡度波动研究中发现的特征。本文是主题为“迈向大雷诺数下壁面湍流高保真模型的发展”特刊的一部分。