Suppr超能文献

汤森德壁面附着涡的特征尺度。

Characteristic scales of Townsend's wall-attached eddies.

作者信息

Lozano-Durán Adrián, Bae Hyunji Jane

机构信息

Center for Turbulence Research, Stanford University, CA 94305, USA.

Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA 91125, USA.

出版信息

J Fluid Mech. 2019 Jun 10;868:698-725. doi: 10.1017/jfm.2019.209.

Abstract

Townsend , 1976, Cambridge University Press) proposed a structural model for the logarithmic layer (log layer) of wall turbulence at high Reynolds numbers, where the dominant momentum-carrying motions are organised into a multiscale population of eddies attached to the wall. In the attached-eddy framework, the relevant length and velocity scales of the wall-attached eddies are the friction velocity and the distance to the wall. In the present work, we hypothesise that the momentum-carrying eddies are controlled by the mean momentum flux and mean shear with no explicit reference to the distance to the wall and propose new characteristic velocity, length and time scales consistent with this argument. Our hypothesis is supported by direct numerical simulation of turbulent channel flows driven by non-uniform body forces and modified mean velocity profiles, where the resulting outer-layer flow structures are substantially altered to accommodate the new mean momentum transfer. The proposed scaling is further corroborated by simulations where the no-slip wall is replaced by a Robin boundary condition for the three velocity components, allowing for substantial wall-normal transpiration at all length scales. We show that the outer-layer one-point statistics and spectra of this channel with transpiration agree quantitatively with those of its wall-bounded counterpart. The results reveal that the wall-parallel no-slip condition is not required to recover classic wall-bounded turbulence far from the wall and, more importantly, neither is the impermeability condition at the wall.

摘要

汤森(1976年,剑桥大学出版社)针对高雷诺数下壁面湍流的对数层(对数层)提出了一个结构模型,其中主要的动量携带运动被组织成附着在壁面上的多尺度涡旋群体。在附着涡旋框架中,附着在壁面上的涡旋的相关长度和速度尺度是摩擦速度和到壁面的距离。在本研究中,我们假设动量携带涡旋由平均动量通量和平均剪切力控制,而无需明确提及到壁面的距离,并提出与该论点一致的新的特征速度、长度和时间尺度。我们的假设得到了由非均匀体力驱动的湍流通道流和修正平均速度剖面的直接数值模拟的支持,其中产生的外层流动结构被大幅改变以适应新的平均动量传递。当用罗宾边界条件代替三个速度分量的无滑移壁面,允许在所有长度尺度上有大量壁面法向渗透时,模拟进一步证实了所提出的尺度。我们表明,这种有渗透的通道的外层单点统计量和谱与无渗透壁面通道的定量一致。结果表明,远离壁面时恢复经典壁面边界湍流不需要壁面平行无滑移条件,更重要的是,壁面处的不可渗透条件也不需要。

相似文献

1
Characteristic scales of Townsend's wall-attached eddies.
J Fluid Mech. 2019 Jun 10;868:698-725. doi: 10.1017/jfm.2019.209.
3
Error scaling of large-eddy simulation in the outer region of wall-bounded turbulence.
J Comput Phys. 2019 Sep;392:532-555. doi: 10.1016/j.jcp.2019.04.063.
4
Dynamic slip wall model for large-eddy simulation.
J Fluid Mech. 2019 Jan 25;859:400-432. doi: 10.1017/jfm.2018.838.
5
The Onsager theory of wall-bounded turbulence and Taylor's momentum anomaly.
Philos Trans A Math Phys Eng Sci. 2022 Mar 7;380(2218):20210079. doi: 10.1098/rsta.2021.0079. Epub 2022 Jan 17.
6
Self-sustaining processes at all scales in wall-bounded turbulent shear flows.
Philos Trans A Math Phys Eng Sci. 2017 Mar 13;375(2089). doi: 10.1098/rsta.2016.0088.
7
Fractality and the law of the wall.
Phys Rev E. 2018 May;97(5-1):053110. doi: 10.1103/PhysRevE.97.053110.
8
Turbulence intensities in large-eddy simulation of wall-bounded flows.
Phys Rev Fluids. 2018 Jan;3(1). doi: 10.1103/PhysRevFluids.3.014610.
9
Direct Numerical Simulation and Theory of a Wall-Bounded Flow with Zero Skin Friction.
Flow Turbul Combust. 2017 Jul 27;99(3-4):553-564. doi: 10.1007/s10494-017-9834-x.
10
Velocity transformation for compressible wall-bounded turbulent flows with and without heat transfer.
Proc Natl Acad Sci U S A. 2021 Aug 24;118(34). doi: 10.1073/pnas.2111144118.

引用本文的文献

1
Decomposing causality into its synergistic, unique, and redundant components.
Nat Commun. 2024 Nov 1;15(1):9296. doi: 10.1038/s41467-024-53373-4.
2
Scientific multi-agent reinforcement learning for wall-models of turbulent flows.
Nat Commun. 2022 Mar 17;13(1):1443. doi: 10.1038/s41467-022-28957-7.
3
Error scaling of large-eddy simulation in the outer region of wall-bounded turbulence.
J Comput Phys. 2019 Sep;392:532-555. doi: 10.1016/j.jcp.2019.04.063.

本文引用的文献

3
Turbulence intensities in large-eddy simulation of wall-bounded flows.
Phys Rev Fluids. 2018 Jan;3(1). doi: 10.1103/PhysRevFluids.3.014610.
4
Dynamic slip wall model for large-eddy simulation.
J Fluid Mech. 2019 Jan 25;859:400-432. doi: 10.1017/jfm.2018.838.
5
Universality of the Turbulent Velocity Profile.
Phys Rev Lett. 2017 Jun 2;118(22):224501. doi: 10.1103/PhysRevLett.118.224501. Epub 2017 Jun 1.
6
Turbulent pipe flow at extreme Reynolds numbers.
Phys Rev Lett. 2012 Mar 2;108(9):094501. doi: 10.1103/PhysRevLett.108.094501. Epub 2012 Feb 28.
7
Self-sustained process at large scales in turbulent channel flow.
Phys Rev Lett. 2010 Jul 23;105(4):044505. doi: 10.1103/PhysRevLett.105.044505.
8
What are we learning from simulating wall turbulence?
Philos Trans A Math Phys Eng Sci. 2007 Mar 15;365(1852):715-32. doi: 10.1098/rsta.2006.1943.
9
Large- and very-large-scale motions in channel and boundary-layer flows.
Philos Trans A Math Phys Eng Sci. 2007 Mar 15;365(1852):665-81. doi: 10.1098/rsta.2006.1940.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验