Gergondey Rachel, Garcia Camille, Marchand Christophe H, Lemaire Stephane D, Camadro Jean-Michel, Auchère Françoise
Laboratoire Mitochondries, Métaux et Stress Oxydant, Institut Jacques Monod, UMR 7592, Université Paris-Diderot/CNRS, 15 rue Hélène Brion, 75013 Paris, France.
Plateforme Protéomique structurale et fonctionnelle/Spectrométrie de masse, Institut Jacques Monod, UMR 7592, Université Paris-Diderot/CNRS, 15 rue Hélène Brion, 75013 Paris, France.
Biochem J. 2017 Mar 15;474(7):1175-1193. doi: 10.1042/BCJ20160927.
The potential biological consequences of oxidative stress and changes in glutathione levels include the oxidation of susceptible protein thiols and reversible covalent binding of glutathione to the -SH groups of proteins by S-glutathionylation. Mitochondria are central to the response to oxidative stress and redox signaling. It is therefore crucial to explore the adaptive response to changes in thiol-dependent redox status in these organelles. We optimized the purification protocol of glutathionylated proteins in the yeast and present a detailed proteomic analysis of the targets of protein glutathionylation in cells undergoing constitutive metabolism and after exposure to various stress conditions. This work establishes the physiological importance of the glutathionylation process in under basal conditions and provides evidence for an atypical and unexpected cellular distribution of the process between the cytosol and mitochondria. In addition, our data indicate that each oxidative condition (diamide, GSSG, HO, or the presence of iron) elicits an adaptive metabolic response affecting specific mitochondrial metabolic pathways, mainly involved in the energetic maintenance of the cells. The correlation of protein modifications with intracellular glutathione levels suggests that protein deglutathionylation may play a role in protecting mitochondria from oxidative stress. This work provides further insights into the diversity of proteins undergoing glutathionylation and the role of this post-translational modification as a regulatory process in the adaptive response of the cell.
氧化应激和谷胱甘肽水平变化的潜在生物学后果包括易感蛋白质硫醇的氧化以及谷胱甘肽通过S-谷胱甘肽化与蛋白质的-SH基团发生可逆的共价结合。线粒体是氧化应激和氧化还原信号反应的核心。因此,探索这些细胞器中对硫醇依赖性氧化还原状态变化的适应性反应至关重要。我们优化了酵母中谷胱甘肽化蛋白质的纯化方案,并对处于组成性代谢状态以及暴露于各种应激条件后的细胞中蛋白质谷胱甘肽化的靶点进行了详细的蛋白质组学分析。这项工作确立了谷胱甘肽化过程在基础条件下的生理重要性,并为该过程在细胞质和线粒体之间非典型且意外的细胞分布提供了证据。此外,我们的数据表明,每种氧化条件(二硫苏糖醇、氧化型谷胱甘肽、过氧化氢或铁的存在)都会引发一种适应性代谢反应,影响特定的线粒体代谢途径,主要涉及细胞的能量维持。蛋白质修饰与细胞内谷胱甘肽水平的相关性表明,蛋白质去谷胱甘肽化可能在保护线粒体免受氧化应激方面发挥作用。这项工作进一步深入了解了发生谷胱甘肽化的蛋白质的多样性以及这种翻译后修饰作为细胞适应性反应中的一种调节过程所起的作用。