Somodi Imelda, Lepesi Nikolett, Botta-Dukát Zoltán
MTA Centre for Ecological Research Tihany Hungary.
Department of Plant Systematics, Ecology and Theoretical Biology Eötvös Loránd University Budapest Hungary; National Adaptation Centre Geological and Geophysical Institute of Hungary Budapest Hungary.
Ecol Evol. 2017 Jan 12;7(3):863-872. doi: 10.1002/ece3.2654. eCollection 2017 Feb.
It has long been a concern that performance measures of species distribution models react to attributes of the modeled entity arising from the input data structure rather than to model performance. Thus, the study of Allouche et al. (, 43, 1223, 2006) identifying the true skill statistics (TSS) as being independent of prevalence had a great impact. However, empirical experience questioned the validity of the statement. We searched for technical reasons behind these observations. We explored possible sources of prevalence dependence in TSS including sampling constraints and species characteristics, which influence the calculation of TSS. We also examined whether the widespread solution of using the maximum of TSS for comparison among species introduces a prevalence effect. We found that the design of Allouche et al. (, 43, 1223, 2006) was flawed, but TSS is indeed independent of prevalence if model predictions are binary and under the strict set of assumptions methodological studies usually apply. However, if we take realistic sources of prevalence dependence, effects appear even in binary calculations. Furthermore, in the widespread approach of using maximum TSS for continuous predictions, the use of the maximum alone induces prevalence dependence for small, but realistic samples. Thus, prevalence differences need to be taken into account when model comparisons are carried out based on discrimination capacity. The sources we identified can serve as a checklist to safely control comparisons, so that true discrimination capacity is compared as opposed to artefacts arising from data structure, species characteristics, or the calculation of the comparison measure (here TSS).
长期以来,人们一直担心物种分布模型的性能指标反映的是输入数据结构中建模实体的属性,而非模型性能。因此,阿卢什等人(2006年,第43卷,第1223页)将真技能统计量(TSS)确定为与患病率无关的研究产生了重大影响。然而,经验经验对这一说法的有效性提出了质疑。我们寻找了这些观察结果背后的技术原因。我们探讨了TSS中患病率依赖性的可能来源,包括抽样限制和物种特征,这些因素会影响TSS的计算。我们还研究了使用TSS最大值进行物种间比较这一广泛采用的方法是否会引入患病率效应。我们发现,阿卢什等人(2006年,第43卷,第1223页)的设计存在缺陷,但如果模型预测是二元的,并且在方法学研究通常采用的严格假设条件下,TSS确实与患病率无关。然而,如果我们考虑患病率依赖性的现实来源,即使在二元计算中也会出现效应。此外,在使用最大TSS进行连续预测的广泛方法中,仅使用最大值就会对小样本但现实的样本产生患病率依赖性。因此,在基于判别能力进行模型比较时,需要考虑患病率差异。我们确定的这些来源可以作为一个清单,以安全地控制比较,从而比较真正的判别能力,而不是比较由数据结构、物种特征或比较指标(这里是TSS)的计算产生的人为因素。