Suppr超能文献

八面体钯纳米粒子作为电化学吸附和吸收氢的优良宿主。

Octahedral palladium nanoparticles as excellent hosts for electrochemically adsorbed and absorbed hydrogen.

机构信息

Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), UMR CNRS 7285, Equipe "Catalyse et Milieux Non Conventionnels," Université de Poitiers, 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 9, France.

Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada.

出版信息

Sci Adv. 2017 Feb 3;3(2):e1600542. doi: 10.1126/sciadv.1600542. eCollection 2017 Feb.

Abstract

We report new results for electrochemical H adsorption on and absorption in octahedral palladium nanoparticles (Pd-NPs) with an average tip-to-tip size of 7.8 nm and a narrow size distribution. They reveal a very high H loading of 0.90 that cannot be achieved using bulk Pd materials or larger NPs; this behavior is assigned to a combination of two factors: their small size and face morphology. Temperature-dependent cyclic voltammetry (CV) studies in the range of 296 to 333 K reveal unique features that are attributed to electrochemical H adsorption, H absorption, and H generation. The CV features are used to prepare H adsorption and absorption isotherms that are then used in thermodynamic data analysis. Modeling of the experimental results demonstrates that, upon H adsorption and absorption, Pd-NPs develop a core-shell-skin structure, each with its unique H loading. The electrochemical results obtained for octahedral Pd-NPs are compared to analogous data obtained for cubic Pd-NPs with a similar size as well as for larger cubic Pd-NPs and bulk materials under gas-phase conditions.

摘要

我们报告了在平均尖端到尖端尺寸为 7.8nm 且尺寸分布较窄的八面体钯纳米粒子 (Pd-NPs) 上电化学 H 吸附和吸收的新结果。它们显示出非常高的 H 负载量 0.90,这是使用体相 Pd 材料或更大的 NPs 无法实现的;这种行为归因于两个因素的结合:它们的小尺寸和面形态。在 296 至 333 K 的温度范围内进行的循环伏安 (CV) 研究揭示了独特的特征,这些特征归因于电化学 H 吸附、H 吸收和 H 生成。CV 特征用于制备 H 吸附和吸收等温线,然后用于热力学数据分析。对实验结果的建模表明,在 H 吸附和吸收后,Pd-NPs 形成了具有独特 H 负载量的核壳皮结构。对于在气相条件下具有类似尺寸的八面体 Pd-NPs 以及更大的立方 Pd-NPs 和体相材料,获得的电化学结果与类似数据进行了比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06eb/5291700/11a239206c50/1600542-F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验