Brehm Martin, Kafka Alexander, Bamler Markus, Kühne Ralph, Schüürmann Gerrit, Sikk Lauri, Burk Jaanus, Burk Peeter, Tamm Tarmo, Tämm Kaido, Pokhrel Suman, Mädler Lutz, Kahru Anne, Aruoja Villem, Sihtmäe Mariliis, Scott-Fordsmand Janeck, Sorensen Peter B, Escorihuela Laura, Roca Carlos P, Fernández Alberto, Giralt Francesc, Rallo Robert
UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318, Leipzig, Germany.
Faculty for Chemistry and Mineralogy, University of Leipzig, Johannisallee 29, 04103, Leipzig, Germany.
Adv Exp Med Biol. 2017;947:257-301. doi: 10.1007/978-3-319-47754-1_9.
The development and implementation of safe-by-design strategies is key for the safe development of future generations of nanotechnology enabled products. The safety testing of the huge variety of nanomaterials that can be synthetized is unfeasible due to time and cost constraints. Computational modeling facilitates the implementation of alternative testing strategies in a time and cost effective way. The development of predictive nanotoxicology models requires the use of high quality experimental data on the structure, physicochemical properties and bioactivity of nanomaterials. The FP7 Project MODERN has developed and evaluated the main components of a computational framework for the evaluation of the environmental and health impacts of nanoparticles. This chapter describes each of the elements of the framework including aspects related to data generation, management and integration; development of nanodescriptors; establishment of nanostructure-activity relationships; identification of nanoparticle categories; hazard ranking and risk assessment.
设计安全策略的开发与实施是下一代纳米技术产品安全发展的关键。由于时间和成本限制,对大量可合成的纳米材料进行安全测试是不可行的。计算建模有助于以具有时间和成本效益的方式实施替代测试策略。预测性纳米毒理学模型的开发需要使用有关纳米材料结构、物理化学性质和生物活性的高质量实验数据。FP7项目MODERN已经开发并评估了一个用于评估纳米颗粒对环境和健康影响的计算框架的主要组件。本章描述了该框架的每个元素,包括与数据生成、管理和整合相关的方面;纳米描述符的开发;纳米结构-活性关系的建立;纳米颗粒类别的识别;危害分级和风险评估。