Suppr超能文献

Fgf9基因中的一个点突变会阻碍关节中间带的形成,导致多发骨性连接综合征。

A point mutation in Fgf9 impedes joint interzone formation leading to multiple synostoses syndrome.

作者信息

Tang Lingyun, Wu Xiaolin, Zhang Hongxin, Lu Shunyuan, Wu Min, Shen Chunling, Chen Xuejiao, Wang Yicheng, Wang Weigang, Shen Yan, Gu Mingmin, Ding Xiaoyi, Jin Xiaolong, Fei Jian, Wang Zhugang

机构信息

State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, P.R. China.

Department of Medical Genetics, E-Institutes of Shanghai Universities, SJTUSM, Shanghai, P.R. China.

出版信息

Hum Mol Genet. 2017 Apr 1;26(7):1280-1293. doi: 10.1093/hmg/ddx029.

Abstract

Human multiple synostoses syndrome (SYNS) is an autosomal dominant disorder characterized by multiple joint fusions. We previously identified a point mutation (S99N) in FGF9 that causes human SYNS3. However, the physiological function of FGF9 during joint development and comprehensive molecular portraits of SYNS3 remain elusive. Here, we report that mice harboring the S99N mutation in Fgf9 develop the curly tail phenotype and partially or fully fused caudal vertebrae and limb joints, which mimic the major phenotypes of SYNS3 patients. Further study reveals that the S99N mutation in Fgf9 disrupts joint interzone formation by affecting the chondrogenic differentiation of mesenchymal cells at the early stage of joint development. Consistently, the limb bud micromass culture (LBMMC) assay shows that Fgf9 inhibits mesenchymal cell differentiation into chondrocytes by downregulating the expression of Sox6 and Sox9. However, the mutant protein does not exhibit the same inhibitory effect. We also show that Fgf9 is required for normal expression of Gdf5 in the prospective elbow and knee joints through its activation of Gdf5 promoter activity. Signal transduction assays indicate that the S99N mutation diminishes FGF signaling in developmental limb joints. Finally, we demonstrate that the conformational change in FGF9 resulting from the S99N mutation disrupts FGF9/FGFR/heparin interaction, which impedes FGF signaling in developmental joints. Taken together, we conclude that the S99N mutation in Fgf9 causes SYNS3 via the disturbance of joint interzone formation. These results further implicate the crucial role of Fgf9 during embryonic joint development.

摘要

人类多关节融合综合征(SYNS)是一种常染色体显性疾病,其特征为多个关节融合。我们之前在FGF9中鉴定出一个导致人类SYNS3的点突变(S99N)。然而,FGF9在关节发育过程中的生理功能以及SYNS3的全面分子特征仍不清楚。在此,我们报告携带Fgf9基因S99N突变的小鼠出现卷尾表型以及部分或完全融合的尾椎和四肢关节,这与SYNS3患者的主要表型相似。进一步研究表明,Fgf9基因中的S99N突变通过影响关节发育早期间充质细胞的软骨形成分化,破坏关节间区的形成。一致地,肢体芽微团培养(LBMMC)试验表明,Fgf9通过下调Sox6和Sox9的表达来抑制间充质细胞分化为软骨细胞。然而,突变蛋白并未表现出相同的抑制作用。我们还表明,Fgf9通过激活Gdf5启动子活性,对于预期的肘关节和膝关节中Gdf5的正常表达是必需的。信号转导分析表明,S99N突变会减弱发育中的肢体关节中的FGF信号传导。最后,我们证明由S99N突变导致的FGF9构象变化破坏了FGF9/FGFR/肝素相互作用,这阻碍了发育关节中的FGF信号传导。综上所述,我们得出结论,Fgf9基因中的S99N突变通过干扰关节间区的形成导致SYNS3。这些结果进一步表明Fgf9在胚胎关节发育过程中的关键作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验