患有成纤维细胞生长因子9 N143T突变的肘膝关节融合(Eks)突变小鼠的颈椎融合
Cervical vertebrae fusion in elbow knee synostosis (Eks)-mutant mice with fibroblast growth factor 9 N143T mutation.
作者信息
Djameh Georgina, Harada Masayo, Akita Keiichi
机构信息
Department of Clinical Anatomy, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan.
出版信息
Congenit Anom (Kyoto). 2025 Jan-Dec;65(1):e70016. doi: 10.1111/cga.70016.
Proper vertebral column development requires precise segmentation and regulated chondrogenesis during embryogenesis. Mutations affecting fibroblast growth factor 9 (FGF9) signaling disrupt these processes, resulting in abnormal vertebral column development. A missense mutation in FGF9 (p.Asn143Thr) produces elbow knee synostosis (Eks)-mutant mice, which display skeletal fusions, including those in the vertebral column, underscoring the essential role of FGF9 in vertebral segmentation and vertebral joint development. However, the mechanisms regulating joint formation in vertebrae remain elusive. Here, we report that the homozygous Eks mutant mice exhibit neural arch lamina fusion along the rostrocaudal axis at the dorsolateral position in neonates. We investigated the cellular and molecular mechanisms underlying the cervical vertebral fusion in Fgf9 embryos. Fgf9 embryos showed multiple fusions and thickened cartilage of cervical lamina on embryonic day (E) 14.5 and E13.5. Additionally, Fgf9 embryos exhibited COL2A1 expression domain expansion accompanied by ectopic chondrocyte accumulation in the presumptive interlaminar space on E12.5 and E11.5. These anomalies persisted through endochondral ossification, leading to postnatal cervical vertebral bone fusion. Ectopic expression of COL2A1, Cyclin D1, and fibroblast growth factor (FGF) signaling target ETV4 was observed in the presumptive interlaminar space, indicating altered cell proliferation and cell fate specification. These findings demonstrate that FGF9 protein interferes with vertebral column segmentation by impairing chondrogenic boundary regulation through ectopic cell proliferation and transcriptional activity. In conclusion, ectopic FGF9 signaling leads to cervical vertebral fusion, highlighting its contributing role in maintaining vertebral segmentation and chondrogenesis during embryogenesis.
正常的脊柱发育需要在胚胎发生过程中进行精确的节段化和受控的软骨形成。影响成纤维细胞生长因子9(FGF9)信号传导的突变会破坏这些过程,导致脊柱发育异常。FGF9中的一个错义突变(p.Asn143Thr)产生肘膝融合(Eks)突变小鼠,其表现出骨骼融合,包括脊柱中的融合,这突出了FGF9在脊柱节段化和椎间关节发育中的重要作用。然而,调节椎骨关节形成的机制仍然不清楚。在这里,我们报告纯合Eks突变小鼠在新生儿的背外侧位置沿前后轴表现出神经弓板融合。我们研究了Fgf9胚胎中颈椎融合的细胞和分子机制。Fgf9胚胎在胚胎第(E)14.5天和E13.5天显示出多个融合以及颈椎板增厚的软骨。此外,Fgf9胚胎在E12.5天和E11.5天表现出COL2A1表达域扩展,伴有异位软骨细胞在假定的层间空间积聚。这些异常通过软骨内成骨持续存在,导致出生后颈椎骨融合。在假定的层间空间中观察到COL2A1、细胞周期蛋白D1和成纤维细胞生长因子(FGF)信号转导靶标ETV4的异位表达,表明细胞增殖和细胞命运特化发生改变。这些发现表明,FGF9蛋白通过异位细胞增殖和转录活性损害软骨形成边界调节,从而干扰脊柱节段化。总之,异位FGF9信号传导导致颈椎融合,突出了其在胚胎发生过程中维持脊柱节段化和软骨形成的作用。