文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

工具变量分析与选择偏倚

Instrumental Variable Analyses and Selection Bias.

作者信息

Canan Chelsea, Lesko Catherine, Lau Bryan

机构信息

From the Johns Hopkins Bloomberg School of Public Health, Baltimore, MD.

出版信息

Epidemiology. 2017 May;28(3):396-398. doi: 10.1097/EDE.0000000000000639.


DOI:10.1097/EDE.0000000000000639
PMID:28169934
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5378646/
Abstract

Instrumental variables (IV) are used to draw causal conclusions about the effect of exposure E on outcome Y in the presence of unmeasured confounders. IV assumptions have been well described: (1) IV affects E; (2) IV affects Y only through E; (3) IV shares no common cause with Y. Even when these assumptions are met, biased effect estimates can result if selection bias allows a noncausal path from E to Y. We demonstrate the presence of bias in IV analyses on a sample from a simulated dataset, where selection into the sample was a collider on a noncausal path from E to Y. By applying inverse probability of selection weights, we were able to eliminate the selection bias. IV approaches may protect against unmeasured confounding but are not immune from selection bias. Inverse probability of selection weights used with IV approaches can minimize bias.

摘要

在存在未测量混杂因素的情况下,工具变量(IV)用于得出关于暴露因素E对结局Y影响的因果结论。IV假设已得到充分描述:(1)IV影响E;(2)IV仅通过E影响Y;(3)IV与Y没有共同的原因。即使满足这些假设,如果选择偏倚允许从E到Y的非因果路径,也可能导致有偏差的效应估计。我们在一个模拟数据集的样本上证明了IV分析中存在偏差,其中进入样本的选择是从E到Y的非因果路径上的一个对撞机。通过应用选择权重的逆概率,我们能够消除选择偏倚。IV方法可能可以防范未测量的混杂,但不能免受选择偏倚的影响。与IV方法一起使用的选择权重逆概率可以将偏差最小化。

相似文献

[1]
Instrumental Variable Analyses and Selection Bias.

Epidemiology. 2017-5

[2]
On a preference-based instrumental variable approach in reducing unmeasured confounding-by-indication.

Stat Med. 2015-3-30

[3]
Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies.

Stat Methods Med Res. 2004-2

[4]
Selection Bias When Estimating Average Treatment Effects Using One-sample Instrumental Variable Analysis.

Epidemiology. 2019-5

[5]
A tutorial on the use of instrumental variables in pharmacoepidemiology.

Pharmacoepidemiol Drug Saf. 2017-4

[6]
Analysis approaches to address treatment nonadherence in pragmatic trials with point-treatment settings: a simulation study.

BMC Med Res Methodol. 2022-2-16

[7]
Unifying instrumental variable and inverse probability weighting approaches for inference of causal treatment effect and unmeasured confounding in observational studies.

Stat Methods Med Res. 2021-3

[8]
Two-stage instrumental variable methods for estimating the causal odds ratio: analysis of bias.

Stat Med. 2011-4-15

[9]
Assessing the impact of unmeasured confounding for binary outcomes using confounding functions.

Int J Epidemiol. 2017-8-1

[10]
Implications of M bias in epidemiologic studies: a simulation study.

Am J Epidemiol. 2012-10-25

引用本文的文献

[1]
Mendelian Randomisation: Concepts, Opportunities, Challenges, and Future Directions.

Glob Heart. 2025-6-17

[2]
Selection Biases in Perinatal Research: A Comparison of Inverse Probability Weighting, Instrumental Variable and Sibling-Comparison Design.

Paediatr Perinat Epidemiol. 2025-4-25

[3]
A mendelian randomization study on the association between 731 types of immune cells and 91 types of blood cells with venous thromboembolism.

Thromb J. 2025-4-3

[4]
Percutaneous vs. surgical revascularization of non-ST-segment elevation myocardial infarction with multivessel disease: the SWEDEHEART registry.

Eur Heart J. 2025-2-7

[5]
Inotropes and mortality in patients with cardiogenic shock: an instrumental variable analysis from the SWEDEHEART registry.

Eur Heart J Cardiovasc Pharmacother. 2025-2-8

[6]
A data-adaptive method for investigating effect heterogeneity with high-dimensional covariates in Mendelian randomization.

BMC Med Res Methodol. 2024-2-10

[7]
Long-term health outcomes for patients with obstructive sleep apnea: placing the Agency for Healthcare Research and Quality report in context-a multisociety commentary.

J Clin Sleep Med. 2024-1-1

[8]
Investigating the causal interplay between sleep traits and risk of acute myocardial infarction: a Mendelian randomization study.

BMC Med. 2023-10-5

[9]
Strategies to Assess the Effect of Continuous Positive Airway Pressure on Long-Term Clinically Important Outcomes among Patients with Symptomatic Obstructive Sleep Apnea: An Official American Thoracic Society Workshop Report.

Ann Am Thorac Soc. 2023-7

[10]
Strategies to investigate and mitigate collider bias in genetic and Mendelian randomisation studies of disease progression.

PLoS Genet. 2023-2

本文引用的文献

[1]
Selection Bias When Using Instrumental Variable Methods to Compare Two Treatments But More Than Two Treatments Are Available.

Int J Biostat. 2016-5-1

[2]
Selection Bias Due to Loss to Follow Up in Cohort Studies.

Epidemiology. 2016-1

[3]
Mendelian randomization studies in the elderly.

Epidemiology. 2015-3

[4]
Selecting on treatment: a pervasive form of bias in instrumental variable analyses.

Am J Epidemiol. 2015-1-21

[5]
Commentary: how to report instrumental variable analyses (suggestions welcome).

Epidemiology. 2013-5

[6]
Comparison of instrumental variable analysis using a new instrument with risk adjustment methods to reduce confounding by indication.

Am J Epidemiol. 2012-4-17

[7]
A most stubborn bias: no adjustment method fully resolves confounding by indication in observational studies.

J Clin Epidemiol. 2009-5-19

[8]
Instruments for causal inference: an epidemiologist's dream?

Epidemiology. 2006-7

[9]
Instrumental variables: application and limitations.

Epidemiology. 2006-5

[10]
A structural approach to selection bias.

Epidemiology. 2004-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索