Suppr超能文献

电突触:间隙及其他部位的分子复杂性。

The electrical synapse: Molecular complexities at the gap and beyond.

作者信息

Miller Adam C, Pereda Alberto E

机构信息

Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon.

Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York.

出版信息

Dev Neurobiol. 2017 May;77(5):562-574. doi: 10.1002/dneu.22484. Epub 2017 Mar 8.

Abstract

Gap junctions underlie electrical synaptic transmission between neurons. Generally perceived as simple intercellular channels, "electrical synapses" have demonstrated to be more functionally sophisticated and structurally complex than initially anticipated. Electrical synapses represent an assembly of multiple molecules, consisting of channels, adhesion complexes, scaffolds, regulatory machinery, and trafficking proteins, all required for their proper function and plasticity. Additionally, while electrical synapses are often viewed as strictly symmetric structures, emerging evidence has shown that some components forming electrical synapses can be differentially distributed at each side of the junction. We propose that the molecular complexity and asymmetric distribution of proteins at the electrical synapse provides rich potential for functional diversity. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 562-574, 2017.

摘要

缝隙连接是神经元之间电突触传递的基础。“电突触”通常被认为是简单的细胞间通道,但已证明其功能比最初预期的更为复杂,结构也更为复杂。电突触是多种分子的集合体,由通道、黏附复合物、支架、调节机制和运输蛋白组成,这些都是其正常功能和可塑性所必需的。此外,虽然电突触通常被视为严格对称的结构,但新出现的证据表明,形成电突触的一些成分在突触连接处的两侧可能会有不同的分布。我们认为,电突触处蛋白质的分子复杂性和不对称分布为功能多样性提供了丰富的潜力。© 2016威利期刊公司。《发育神经生物学》77: 562 - 574, 2017。

相似文献

1
The electrical synapse: Molecular complexities at the gap and beyond.
Dev Neurobiol. 2017 May;77(5):562-574. doi: 10.1002/dneu.22484. Epub 2017 Mar 8.
3
Electrical synaptic transmission requires a postsynaptic scaffolding protein.
Elife. 2021 Apr 28;10:e66898. doi: 10.7554/eLife.66898.
4
Asymmetry of an Intracellular Scaffold at Vertebrate Electrical Synapses.
Curr Biol. 2017 Nov 20;27(22):3561-3567.e4. doi: 10.1016/j.cub.2017.10.011. Epub 2017 Nov 2.
5
Electrical transmission: Two structures, same functions?
Dev Neurobiol. 2017 May;77(5):517-521. doi: 10.1002/dneu.22488.
6
A genetic basis for molecular asymmetry at vertebrate electrical synapses.
Elife. 2017 May 22;6:e25364. doi: 10.7554/eLife.25364.
7
Neurobeachin controls the asymmetric subcellular distribution of electrical synapse proteins.
Curr Biol. 2023 May 22;33(10):2063-2074.e4. doi: 10.1016/j.cub.2023.04.049. Epub 2023 May 11.
8
Long-term potentiation in an innexin-based electrical synapse.
Sci Rep. 2018 Aug 22;8(1):12579. doi: 10.1038/s41598-018-30966-w.
9
Functional asymmetry and plasticity of electrical synapses interconnecting neurons through a 36-state model of gap junction channel gating.
PLoS Comput Biol. 2017 Apr 6;13(4):e1005464. doi: 10.1371/journal.pcbi.1005464. eCollection 2017 Apr.
10
The Potential Role of Gap Junctional Plasticity in the Regulation of State.
Neuron. 2017 Mar 22;93(6):1275-1295. doi: 10.1016/j.neuron.2017.02.041.

引用本文的文献

1
Electrical synapse molecular diversity revealed by proximity-based proteomic discovery.
bioRxiv. 2024 Nov 22:2024.11.22.624763. doi: 10.1101/2024.11.22.624763.
4
5
Understanding neural circuit function through synaptic engineering.
Nat Rev Neurosci. 2024 Feb;25(2):131-139. doi: 10.1038/s41583-023-00777-8. Epub 2024 Jan 3.
6
Electrical synapse structure requires distinct isoforms of a postsynaptic scaffold.
PLoS Genet. 2023 Nov 27;19(11):e1011045. doi: 10.1371/journal.pgen.1011045. eCollection 2023 Nov.
7
A gonadal gap junction INX-14/Notch GLP-1 signaling axis suppresses gut defense through an intestinal lysosome pathway.
Front Immunol. 2023 Oct 19;14:1249436. doi: 10.3389/fimmu.2023.1249436. eCollection 2023.
8
Mapping of neuronal and glial primary cilia contactome and connectome in the human cerebral cortex.
Neuron. 2024 Jan 3;112(1):41-55.e3. doi: 10.1016/j.neuron.2023.09.032. Epub 2023 Oct 28.
9
The scaling of goals from cellular to anatomical homeostasis: an evolutionary simulation, experiment and analysis.
Interface Focus. 2023 Apr 14;13(3):20220072. doi: 10.1098/rsfs.2022.0072. eCollection 2023 Jun 6.

本文引用的文献

1
Structural and Functional Consequences of Connexin 36 (Cx36) Interaction with Calmodulin.
Front Mol Neurosci. 2016 Nov 18;9:120. doi: 10.3389/fnmol.2016.00120. eCollection 2016.
2
Atomic structure of the innexin-6 gap junction channel determined by cryo-EM.
Nat Commun. 2016 Dec 1;7:13681. doi: 10.1038/ncomms13681.
3
Dysfunction of mitochondria and deformed gap junctions in the heart of IL-18-deficient mice.
Am J Physiol Heart Circ Physiol. 2016 Aug 1;311(2):H313-25. doi: 10.1152/ajpheart.00927.2015. Epub 2016 Jun 10.
4
The Variable Strength of Electrical Synapses.
Neuron. 2016 Jun 1;90(5):912-4. doi: 10.1016/j.neuron.2016.05.031.
5
Molecular mechanisms regulating formation, trafficking and processing of annular gap junctions.
BMC Cell Biol. 2016 May 24;17 Suppl 1(Suppl 1):22. doi: 10.1186/s12860-016-0087-7.
6
Functional Properties of Dendritic Gap Junctions in Cerebellar Golgi Cells.
Neuron. 2016 Jun 1;90(5):1043-56. doi: 10.1016/j.neuron.2016.03.029. Epub 2016 Apr 28.
7
Regulation of Gap Junction Dynamics by UNC-44/ankyrin and UNC-33/CRMP through VAB-8 in C. elegans Neurons.
PLoS Genet. 2016 Mar 25;12(3):e1005948. doi: 10.1371/journal.pgen.1005948. eCollection 2016 Mar.
8
Specialization of biosynthetic membrane trafficking for neuronal form and function.
Curr Opin Neurobiol. 2016 Aug;39:8-16. doi: 10.1016/j.conb.2016.03.004. Epub 2016 Mar 22.
9
Short-term depression of gap junctional coupling in reticular thalamic neurons of absence epileptic rats.
J Physiol. 2016 Oct 1;594(19):5695-710. doi: 10.1113/JP271811. Epub 2016 Jun 16.
10
Electrical synapses and the development of inhibitory circuits in the thalamus.
J Physiol. 2016 May 15;594(10):2579-92. doi: 10.1113/JP271880. Epub 2016 Mar 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验