Kohmann Denise, Lüttjohann Annika, Seidenbecher Thomas, Coulon Philippe, Pape Hans-Christian
Institute of Physiology I, Westfälische Wilhelms-University Münster, Münster, Germany.
J Physiol. 2016 Oct 1;594(19):5695-710. doi: 10.1113/JP271811. Epub 2016 Jun 16.
Gap junctional electrical coupling between neurons of the reticular thalamic nucleus (RTN) is critical for hypersynchrony in the thalamo-cortical network. This study investigates the role of electrical coupling in pathological rhythmogenesis in RTN neurons in a rat model of absence epilepsy. Rhythmic activation resulted in a Ca(2+) -dependent short-term depression (STD) of electrical coupling between pairs of RTN neurons in epileptic rats, but not in RTN of a non-epileptic control strain. Pharmacological blockade of gap junctions in RTN in vivo induced a depression of seizure activity. The STD of electrical coupling represents a mechanism of Ca(2+) homeostasis in RTN aimed to counteract excessive synchronization.
Neurons in the reticular thalamic nucleus (RTN) are coupled by electrical synapses, which play a major role in regulating synchronous activity. This study investigates electrical coupling in RTN neurons from a rat model of childhood absence epilepsy, genetic absence epilepsy rats from Strasbourg (GAERS), compared with a non-epileptic control (NEC) strain, to assess the impact on pathophysiological rhythmogenesis. Whole-cell recordings were obtained from pairs of RTN neurons of GAERS and NEC in vitro. Coupling was determined by injection of hyperpolarizing current steps in one cell and monitoring evoked voltage responses in both activated and coupled cell. The coupling coefficient (cc) was compared under resting condition, during pharmacological interventions and repeated activation using a series of current injections. The effect of gap junctional coupling on seizure expression was investigated by application of gap junctional blockers into RTN of GAERS in vivo. At resting conditions, cc did not differ between GAERS and NEC. During repeated activation, cc declined in GAERS but not in NEC. This depression in cc was restored within 25 s and was prevented by intracellular presence of BAPTA in the activated but not in the coupled cell. Local application of gap junctional blockers into RTN of GAERS in vivo resulted in a decrease of spike wave discharge (SWD) activity. Repeated activation results in a short-term depression (STD) of gap junctional coupling in RTN neurons of GAERS, depending on intracellular Ca(2+) mechanisms in the activated cell. As blockage of gap junctions in vivo results in a decrease of SWD activity, the STD observed in GAERS is considered a compensatory mechanism, aimed to dampen SWD activity.
丘脑网状核(RTN)神经元之间的缝隙连接电耦合对于丘脑 - 皮质网络中的超同步至关重要。本研究在失神癫痫大鼠模型中探究电耦合在RTN神经元病理性节律发生中的作用。节律性激活导致癫痫大鼠中RTN神经元对之间的电耦合出现Ca(2+) 依赖性短期抑制(STD),但在非癫痫对照品系的RTN中未出现。体内对RTN中的缝隙连接进行药理学阻断可导致癫痫活动受到抑制。电耦合的STD代表了RTN中Ca(2+) 稳态的一种机制,旨在抵消过度同步。
丘脑网状核(RTN)中的神经元通过电突触耦合,电突触在调节同步活动中起主要作用。本研究探究了来自儿童失神癫痫大鼠模型——斯特拉斯堡遗传性失神癫痫大鼠(GAERS)——与非癫痫对照(NEC)品系相比,RTN神经元中的电耦合情况,以评估其对病理生理节律发生的影响。在体外从GAERS和NEC的RTN神经元对中获得全细胞记录。通过向一个细胞中注入超极化电流阶跃并监测激活细胞和耦合细胞中的诱发电压反应来确定耦合情况。在静息条件下、药理学干预期间以及使用一系列电流注入进行重复激活时,比较耦合系数(cc)。通过在体内将缝隙连接阻滞剂应用于GAERS的RTN来研究缝隙连接耦合对癫痫发作表达的影响。在静息条件下,GAERS和NEC之间的cc没有差异。在重复激活期间,GAERS中的cc下降,而NEC中则没有。cc的这种抑制在25秒内恢复,并且通过在激活细胞而非耦合细胞中存在BAPTA可防止这种抑制。在体内将缝隙连接阻滞剂局部应用于GAERS的RTN会导致棘波放电(SWD)活动减少。重复激活导致GAERS的RTN神经元中缝隙连接耦合出现短期抑制(STD),这取决于激活细胞中的细胞内Ca(2+) 机制。由于体内缝隙连接的阻断导致SWD活动减少,因此在GAERS中观察到的STD被认为是一种补偿机制,旨在抑制SWD活动。