文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

铁氧体标记的人神经祖细胞用于磁共振成像诊断猪脊髓中的细胞示踪。

Ferumoxytol Labeling of Human Neural Progenitor Cells for Diagnostic Cellular Tracking in the Porcine Spinal Cord with Magnetic Resonance Imaging.

机构信息

Department of Neurosurgery, School of Medicine, Emory University, Atlanta, Georgia, USA.

Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA.

出版信息

Stem Cells Transl Med. 2017 Jan;6(1):139-150. doi: 10.5966/sctm.2015-0422. Epub 2016 Aug 29.


DOI:10.5966/sctm.2015-0422
PMID:28170192
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5442757/
Abstract

We report on the diagnostic capability of magnetic resonance imaging (MRI)-based tracking of ferumoxytol-labeled human neural progenitor cells (hNPCs) transplanted into the porcine spinal cord. hNPCs prelabeled with two doses of ferumoxytol nanoparticles (hNPC-F and hNPC-F ) were injected into the ventral horn of the spinal cord in healthy minipigs. Ferumoxytol-labeled grafts were tracked in vivo up to 105 days after transplantation with MRI. Injection accuracy was assessed in vivo at day 14 and was predictive of "on" or "off" target cell graft location assessed by histology. No difference in long-term cell survival, assessed by quantitative stereology, was observed among hNPC-F , hNPC-F , or control grafts. Histological iron colocalized with MRI signal and engrafted human nuclei. Furthermore, the ferumoxytol-labeled cells retained nanoparticles and function in vivo. This approach represents an important leap forward toward facilitating translation of cell-tracking technologies to clinical trials by providing a method of assessing transplantation accuracy, delivered dose, and potentially cell survival. Stem Cells Translational Medicine 2017;6:139-150.

摘要

我们报告了基于磁共振成像(MRI)的铁氧体标记的人神经祖细胞(hNPC)移植到猪脊髓后追踪的诊断能力。将两种剂量的铁氧体纳米颗粒(hNPC-F 和 hNPC-F )预先标记的 hNPC 注入健康小型猪脊髓腹角。在移植后 105 天内,通过 MRI 在体内追踪铁氧体标记的移植物。在第 14 天,通过体内评估注射准确性,可以预测组织学评估的“靶内”或“靶外”细胞移植物位置。通过定量立体学评估,hNPC-F 、hNPC-F 或对照移植物之间的长期细胞存活率无差异。组织学铁与 MRI 信号和植入的人类核共定位。此外,铁氧体标记的细胞在体内保留了纳米颗粒并保持功能。这种方法通过提供一种评估移植准确性、传递剂量和潜在细胞存活的方法,代表了朝着促进细胞追踪技术向临床试验转化迈出的重要一步。《干细胞转化医学》2017 年;6:139-150.

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4123/5442757/70eb58500d4f/SCT3-6-139-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4123/5442757/281a2470956c/SCT3-6-139-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4123/5442757/b062953ad685/SCT3-6-139-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4123/5442757/d13032f46edb/SCT3-6-139-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4123/5442757/ad137f387b0c/SCT3-6-139-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4123/5442757/58a95c552914/SCT3-6-139-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4123/5442757/63165bdccb34/SCT3-6-139-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4123/5442757/70eb58500d4f/SCT3-6-139-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4123/5442757/281a2470956c/SCT3-6-139-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4123/5442757/b062953ad685/SCT3-6-139-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4123/5442757/d13032f46edb/SCT3-6-139-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4123/5442757/ad137f387b0c/SCT3-6-139-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4123/5442757/58a95c552914/SCT3-6-139-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4123/5442757/63165bdccb34/SCT3-6-139-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4123/5442757/70eb58500d4f/SCT3-6-139-g007.jpg

相似文献

[1]
Ferumoxytol Labeling of Human Neural Progenitor Cells for Diagnostic Cellular Tracking in the Porcine Spinal Cord with Magnetic Resonance Imaging.

Stem Cells Transl Med. 2016-8-29

[2]
Longitudinal Magnetic Resonance Imaging Tracking of Transplanted Neural Progenitor Cells in the Spinal Cord Utilizing the Bright-Ferritin Mechanism.

Stem Cells Transl Med. 2024-6-14

[3]
Magnetic Resonance Imaging of Iron Oxide-Labeled Human Embryonic Stem Cell-Derived Cardiac Progenitors.

Stem Cells Transl Med. 2016-1

[4]
In Vivo Tracking of Human Neural Progenitor Cells in the Rat Brain Using Magnetic Resonance Imaging Is Not Enhanced by Ferritin Expression.

Cell Transplant. 2016

[5]
Magnetic Resonance Imaging-Guided Transplantation of Neural Stem Cells into the Porcine Spinal Cord.

Stereotact Funct Neurosurg. 2017

[6]
Magnetic resonance imaging tracking of ferumoxytol-labeled human neural stem cells: studies leading to clinical use.

Stem Cells Transl Med. 2013-9-6

[7]
Effects of the iron oxide nanoparticle Molday ION Rhodamine B on the viability and regenerative function of neural stem cells: relevance to clinical translation.

Int J Nanomedicine. 2016-4-27

[8]
Magnetic Resonance Imaging of Ferumoxytol-Labeled Human Mesenchymal Stem Cells in the Mouse Brain.

Stem Cell Rev Rep. 2017-2

[9]
A New Method for Preparing Mesenchymal Stem Cells and Labeling with Ferumoxytol for Cell Tracking by MRI.

Sci Rep. 2016-5-18

[10]
MegaPro, a clinically translatable nanoparticle for tracking of stem cell implants in pig cartilage defects.

Theranostics. 2023

引用本文的文献

[1]
Emerging scaffold- and cellular-based strategies for brain tissue regeneration and imaging.

In Vitro Model. 2022-3-17

[2]
Cell therapy for neurological disorders.

Nat Med. 2024-10

[3]
Optical Devices for the Diagnosis and Management of Spinal Cord Injuries: A Review.

Biosensors (Basel). 2024-6-5

[4]
An update on stem cell therapy for stroke patients: Where are we now?

J Cereb Blood Flow Metab. 2024-9

[5]
Longitudinal Magnetic Resonance Imaging Tracking of Transplanted Neural Progenitor Cells in the Spinal Cord Utilizing the Bright-Ferritin Mechanism.

Stem Cells Transl Med. 2024-6-14

[6]
Repurposing ferumoxytol: Diagnostic and therapeutic applications of an FDA-approved nanoparticle.

Theranostics. 2022

[7]
Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering.

Nanomaterials (Basel). 2021-9-8

[8]
Magnetic resonance imaging of human neural stem cells in rodent and primate brain.

Stem Cells Transl Med. 2021-1

[9]
photoacoustic guidance of stem cell injection and delivery for regenerative spinal cord therapies.

Neurophotonics. 2020-7

[10]
Prussian blue nanocubes as a multimodal contrast agent for image-guided stem cell therapy of the spinal cord.

Photoacoustics. 2020-3-10

本文引用的文献

[1]
Clinical tests of neurotrophic factors for human neurodegenerative diseases, part 1: Where have we been and what have we learned?

Neurobiol Dis. 2017-1

[2]
Clinical tests of neurotrophic factors for human neurodegenerative diseases, part 2: Where do we stand and where must we go next?

Neurobiol Dis. 2017-1

[3]
AAV viral vector delivery to the brain by shape-conforming MR-guided infusions.

J Control Release. 2016-2-27

[4]
MRI/SPECT/Fluorescent Tri-Modal Probe for Evaluating the Homing and Therapeutic Efficacy of Transplanted Mesenchymal Stem Cells in a Rat Ischemic Stroke Model.

Adv Funct Mater. 2015-2-18

[5]
In Vivo Tracking of Human Neural Progenitor Cells in the Rat Brain Using Magnetic Resonance Imaging Is Not Enhanced by Ferritin Expression.

Cell Transplant. 2016

[6]
Preclinical Validation of Multilevel Intraparenchymal Stem Cell Therapy in the Porcine Spinal Cord.

Neurosurgery. 2015-10

[7]
Advances in using MRI probes and sensors for in vivo cell tracking as applied to regenerative medicine.

Dis Model Mech. 2015-4

[8]
SAFETY AND TOLERABILITY OF MRI-GUIDED INFUSION OF AAV2-hAADC INTO THE MID-BRAIN OF NON-HUMAN PRIMATE.

Mol Ther Methods Clin Dev. 2014-10-15

[9]
Analysis of graft survival in a trial of stem cell transplant in ALS.

Ann Clin Transl Neurol. 2014-10-22

[10]
Long-term MRI cell tracking after intraventricular delivery in a patient with global cerebral ischemia and prospects for magnetic navigation of stem cells within the CSF.

PLoS One. 2014-6-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索