Reschke Stefan, Mebs Stefan, Sigfridsson-Clauss Kajsa G V, Kositzki Ramona, Leimkühler Silke, Haumann Michael
Institut für Biochemie und Biologie, Molekulare Enzymologie, Universität Potsdam , 14476 Potsdam, Germany.
Institut für Experimentalphysik, Freie Universität Berlin , 14195 Berlin, Germany.
Inorg Chem. 2017 Feb 20;56(4):2165-2176. doi: 10.1021/acs.inorgchem.6b02846. Epub 2017 Feb 7.
Enzymes of the xanthine oxidase family are among the best characterized mononuclear molybdenum enzymes. Open questions about their mechanism of transfer of an oxygen atom to the substrate remain. The enzymes share a molybdenum cofactor (Moco) with the metal ion binding a molybdopterin (MPT) molecule via its dithiolene function and terminal sulfur and oxygen groups. For xanthine dehydrogenase (XDH) from the bacterium Rhodobacter capsulatus, we used X-ray absorption spectroscopy to determine the Mo site structure, its changes in a pH range of 5-10, and the influence of amino acids (Glu730 and Gln179) close to Moco in wild-type (WT), Q179A, and E730A variants, complemented by enzyme kinetics and quantum chemical studies. Oxidized WT and Q179A revealed a similar Mo(VI) ion with each one MPT, Mo═O, Mo-O, and Mo═S ligand, and a weak Mo-O(E730) bond at alkaline pH. Protonation of an oxo to a hydroxo (OH) ligand (pK ∼ 6.8) causes inhibition of XDH at acidic pH, whereas deprotonated xanthine (pK ∼ 8.8) is an inhibitor at alkaline pH. A similar acidic pK for the WT and Q179A variants, as well as the metrical parameters of the Mo site and density functional theory calculations, suggested protonation at the equatorial oxo group. The sulfido was replaced with an oxo ligand in the inactive E730A variant, further showing another oxo and one Mo-OH ligand at Mo, which are independent of pH. Our findings suggest a reaction mechanism for XDH in which an initial oxo rather than a hydroxo group and the sulfido ligand are essential for xanthine oxidation.
黄嘌呤氧化酶家族的酶是特征最为明确的单核钼酶之一。关于它们将氧原子转移至底物的机制仍存在一些未解决的问题。这些酶与一种钼辅因子(Moco)共享,该金属离子通过其二硫烯功能以及末端硫和氧基团结合一个钼蝶呤(MPT)分子。对于来自荚膜红细菌的黄嘌呤脱氢酶(XDH),我们使用X射线吸收光谱法来确定钼位点结构、其在pH值5 - 10范围内的变化,以及野生型(WT)、Q179A和E730A变体中靠近Moco的氨基酸(Glu730和Gln179)的影响,并辅以酶动力学和量子化学研究。氧化的WT和Q179A显示出类似的Mo(VI)离子,分别带有一个MPT、Mo═O、Mo - O和Mo═S配体,并且在碱性pH下有一个较弱的Mo - O(E730)键。一个氧代配体质子化形成羟基(OH)配体(pK ∼ 6.8)会在酸性pH下导致XDH受到抑制,而去质子化的黄嘌呤(pK ∼ 8.8)在碱性pH下是一种抑制剂。WT和Q179A变体具有相似的酸性pK值,以及钼位点的度量参数和密度泛函理论计算结果,表明质子化发生在赤道面的氧代基团上。在无活性的E730A变体中,硫代配体被一个氧代配体取代,进一步显示出钼上的另一个氧代和一个Mo - OH配体,它们与pH无关。我们的研究结果提出了一种XDH的反应机制,其中最初的氧代而非羟基基团以及硫代配体对于黄嘌呤氧化至关重要。