Shin Jun Wan, Kim Kyung-Hee, Chao Michael J, Atwal Ranjit S, Gillis Tammy, MacDonald Marcy E, Gusella James F, Lee Jong-Min
Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA.
Department of Neurology, Harvard Medical School, Boston, MA, USA
Hum Mol Genet. 2016 Oct 15;25(20):4566-4576. doi: 10.1093/hmg/ddw286.
A comprehensive genetics-based precision medicine strategy to selectively and permanently inactivate only mutant, not normal allele, could benefit many dominantly inherited disorders. Here, we demonstrate the power of our novel strategy of inactivating the mutant allele using haplotype-specific CRISPR/Cas9 target sites in Huntington's disease (HD), a late-onset neurodegenerative disorder due to a toxic dominant gain-of-function CAG expansion mutation. Focusing on improving allele specificity, we combined extensive knowledge of huntingtin (HTT) gene haplotype structure with a novel personalized allele-selective CRISPR/Cas9 strategy based on Protospacer Adjacent Motif (PAM)-altering SNPs to target patient-specific CRISPR/Cas9 sites, aiming at the mutant HTT allele-specific inactivation for a given diplotype. As proof-of-principle, simultaneously using two CRISPR/Cas9 guide RNAs (gRNAs) that depend on PAM sites generated by SNP alleles on the mutant chromosome, we selectively excised ∼44 kb DNA spanning promoter region, transcription start site, and the CAG expansion mutation of the mutant HTT gene, resulting in complete inactivation of the mutant allele without impacting the normal allele. This excision on the disease chromosome completely prevented the generation of mutant HTT mRNA and protein, unequivocally indicating permanent mutant allele-specific inactivation of the HD mutant allele. The perfect allele selectivity with broad applicability of our strategy in disorders with diverse disease haplotypes should also support precision medicine through inactivation of many other gain-of-function mutations.
一种基于遗传学的全面精准医学策略,能够选择性且永久性地仅使突变等位基因失活,而不影响正常等位基因,这可能会使许多显性遗传疾病受益。在这里,我们展示了我们的新策略在亨廷顿舞蹈病(HD)中的强大作用,该疾病是一种迟发性神经退行性疾病,由毒性显性功能获得性CAG扩展突变引起,我们利用单倍型特异性CRISPR/Cas9靶位点使突变等位基因失活。为了提高等位基因特异性,我们将对亨廷顿蛋白(HTT)基因单倍型结构的广泛了解与基于原间隔序列临近基序(PAM)改变的单核苷酸多态性(SNP)的新型个性化等位基因选择性CRISPR/Cas9策略相结合,以靶向患者特异性的CRISPR/Cas9位点,目标是使给定双倍型的突变HTT等位基因特异性失活。作为原理验证,我们同时使用了两个依赖于突变染色体上SNP等位基因产生的PAM位点的CRISPR/Cas9引导RNA(gRNA),选择性地切除了跨越突变HTT基因启动子区域、转录起始位点和CAG扩展突变的约44 kb DNA,导致突变等位基因完全失活,而不影响正常等位基因。在疾病染色体上的这种切除完全阻止了突变HTT mRNA和蛋白质的产生,明确表明HD突变等位基因被永久性地特异性失活。我们的策略具有完美的等位基因选择性,并且在具有不同疾病单倍型的疾病中具有广泛的适用性,这也应该通过使许多其他功能获得性突变失活来支持精准医学。