Niu Nifang, Liu Tongzheng, Cairns Junmei, Ly Reynold C, Tan Xianglin, Deng Min, Fridley Brooke L, Kalari Krishna R, Abo Ryan P, Jenkins Gregory, Batzler Anthony, Carlson Erin E, Barman Poulami, Moran Sebastian, Heyn Holger, Esteller Manel, Wang Liewei
Division of Clinical Pharmacology, Mayo Clinic College of Medicine, Rochester, MN, USA.
Division of Oncology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA.
Hum Mol Genet. 2016 Nov 1;25(21):4819-4834. doi: 10.1093/hmg/ddw301.
Metformin is currently considered as a promising anticancer agent in addition to its anti-diabetic effect. To better individualize metformin therapy and explore novel molecular mechanisms in cancer treatment, we conducted a pharmacogenomic study using 266 lymphoblastoid cell lines (LCLs). Metformin cytotoxicity assay was performed using the MTS assay. Genome-wide association (GWA) analyses were performed in LCLs using 1.3 million SNPs, 485k DNA methylation probes, 54k mRNA expression probe sets, and metformin cytotoxicity (IC50s). Top candidate genes were functionally validated using siRNA screening, followed by MTS assay in breast cancer cell lines. Further study of one top candidate, STUB1, was performed to elucidate the mechanisms by which STUB1 might contribute to metformin action. GWA analyses in LCLs identified 198 mRNA expression probe sets, 12 SNP loci, and 5 DNA methylation loci associated with metformin IC50 with P-values <10−4 or <10−5. Integrated SNP/methylation loci-expression-IC50 analyses found 3 SNP loci or 5 DNA methylation loci associated with metformin IC50 through trans-regulation of expression of 11 or 26 genes with P-value <10−4. Functional validation of top 61 candidate genes in 4 IPA networks indicated down regulation of 14 genes significantly altered metformin sensitivity in two breast cancer cell lines. Mechanistic studies revealed that the E3 ubiquitin ligase, STUB1, could influence metformin response by facilitating proteasome-mediated degradation of cyclin A. GWAS using a genomic data-enriched LCL model system, together with functional and mechanistic studies using cancer cell lines, help us to identify novel genetic and epigenetic biomarkers involved in metformin anticancer response.
除了具有抗糖尿病作用外,二甲双胍目前还被认为是一种有前景的抗癌药物。为了更好地实现二甲双胍治疗的个体化,并探索癌症治疗中的新分子机制,我们使用266个淋巴母细胞系(LCL)进行了一项药物基因组学研究。使用MTS法进行二甲双胍细胞毒性测定。在LCL中使用130万个单核苷酸多态性(SNP)、48.5万个DNA甲基化探针、5.4万个mRNA表达探针集和二甲双胍细胞毒性(IC50)进行全基因组关联(GWA)分析。使用小干扰RNA(siRNA)筛选对顶级候选基因进行功能验证,随后在乳腺癌细胞系中进行MTS测定。对一个顶级候选基因STUB1进行了进一步研究,以阐明STUB1可能促进二甲双胍作用的机制。LCL中的GWA分析确定了198个与二甲双胍IC50相关的mRNA表达探针集、12个SNP位点和5个DNA甲基化位点,P值<10−4或<10−5。综合SNP/甲基化位点-表达-IC50分析发现,3个SNP位点或5个DNA甲基化位点通过对11个或26个基因表达的反式调节与二甲双胍IC50相关,P值<10−4。对4个IPA网络中的61个顶级候选基因进行功能验证表明,14个基因的下调显著改变了两种乳腺癌细胞系中二甲双胍的敏感性。机制研究表明,E3泛素连接酶STUB1可通过促进蛋白酶体介导的细胞周期蛋白A降解来影响二甲双胍反应。使用基因组数据丰富的LCL模型系统进行的全基因组关联研究(GWAS),以及使用癌细胞系进行的功能和机制研究,帮助我们识别参与二甲双胍抗癌反应的新遗传和表观遗传生物标志物。