Wang Rui-Ning, Dong Guo-Yi, Wang Shu-Fang, Fu Guang-Sheng, Wang Jiang-Long
Hebei Key Lab of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China.
Phys Chem Chem Phys. 2017 Feb 22;19(8):5797-5805. doi: 10.1039/c6cp05952j.
A gate electrode is usually used to controllably tune the carrier concentrations, further modulating the electrical conductivity and the Seebeck coefficient to obtain the optimum thermoelectric figure of merit (ZT) in two-dimensional materials. On the other hand, it is necessary to investigate how an electric field induced by a gate voltage affects the electronic structures, further determining the thermoelectric properties. Therefore, by using density functional calculations in combination with Boltzmann theory, the thermoelectric properties of bilayer MX (M = W, Mo; X = S, Se) with or without a 1 V nm perpendicular electric field are comparatively investigated. First of all, the variations of the electrical conductivity (σ), electron thermal conductivity and Seebeck coefficient (S) with the carrier concentration are studied. Due to the trade-off relationship between S and σ, there is an optimum concentration to obtain the maximum ZT, which increases with the temperature due to the enhancement of the Seebeck coefficient. Moreover, N-type bilayers have larger optimum ZTs than P-type bilayers. In addition, the electric field results in the increase of the Seebeck coefficient in low hole-doped MS bilayers and high hole-doped MSe bilayers, thus leading to similar variations in ZT. The optimum ZTs are reduced from 2.11 × 10, 3.19 × 10, 2.47 × 10, and 2.58 × 10 to 1.57 × 10, 1.51 × 10, 2.08 × 10, and 1.43 × 10 for the hole-doped MoS, MoSe, and WSe bilayers, respectively. For N-type bilayers, the electric field shows a destructive effect, resulting in the obvious reduction of the Seebeck coefficient in the MSe layers and the low electron-doped MS bilayers. In electron-doped bilayers, the optimum ZTs will decrease from 3.03 × 10, 6.64 × 10, and 6.69 × 10 to 2.81 × 10, 3.59 × 10, and 4.39 × 10 for the MoS, MoSe, and WSe bilayers, respectively.
栅电极通常用于可控地调节载流子浓度,进而调制电导率和塞贝克系数,以在二维材料中获得最佳热电优值(ZT)。另一方面,有必要研究栅极电压所感应的电场如何影响电子结构,进而确定热电性能。因此,结合密度泛函计算和玻尔兹曼理论,对有或没有1 V/nm垂直电场的双层MX(M = W、Mo;X = S、Se)的热电性能进行了对比研究。首先,研究了电导率(σ)、电子热导率和塞贝克系数(S)随载流子浓度的变化。由于S和σ之间的权衡关系,存在一个能获得最大ZT的最佳浓度,由于塞贝克系数的增强,该最佳浓度随温度升高而增加。此外,N型双层的最佳ZT值比P型双层更大。另外,电场导致低空穴掺杂的MS双层和高空穴掺杂的MSe双层中的塞贝克系数增加,从而导致ZT出现类似变化。对于空穴掺杂的MoS、MoSe和WSe双层,最佳ZT值分别从2.11×10、3.19×10、2.47×10和2.58×10降至为1.57×10、1.51×10、2.08×10和1.43×10。对于N型双层,电场显示出破坏作用,导致MSe层和低空穴掺杂的MS双层中的塞贝克系数明显降低。在电子掺杂的双层中,对于MoS、MoSe和WSe双层,最佳ZT值将分别从3.03×10、6.64×10和6.69×10降至2.81×10、3.59×10和4.39×10。