Suppr超能文献

运用社会网络分析以及全局敏感性和不确定性分析来更好地理解流感爆发。

Use of social network analysis and global sensitivity and uncertainty analyses to better understand an influenza outbreak.

作者信息

Liu Jianhua, Jiang Hongbo, Zhang Hao, Guo Chun, Wang Lei, Yang Jing, Nie Shaofa

机构信息

Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.

Department of Infectious Diseases, Center for Disease Control and Prevention, Yichang City, Hubei, China.

出版信息

Oncotarget. 2017 Jun 27;8(26):43417-43426. doi: 10.18632/oncotarget.15076.

Abstract

In the summer of 2014, an influenza A(H3N2) outbreak occurred in Yichang city, Hubei province, China. A retrospective study was conducted to collect and interpret hospital and epidemiological data on it using social network analysis and global sensitivity and uncertainty analyses. Results for degree (χ2=17.6619, P<0.0001) and betweenness(χ2=21.4186, P<0.0001) centrality suggested that the selection of sampling objects were different between traditional epidemiological methods and newer statistical approaches. Clique and network diagrams demonstrated that the outbreak actually consisted of two independent transmission networks. Sensitivity analysis showed that the contact coefficient (k) was the most important factor in the dynamic model. Using uncertainty analysis, we were able to better understand the properties and variations over space and time on the outbreak. We concluded that use of newer approaches were significantly more efficient for managing and controlling infectious diseases outbreaks, as well as saving time and public health resources, and could be widely applied on similar local outbreaks.

摘要

2014年夏天,中国湖北省宜昌市发生了甲型H3N2流感疫情。开展了一项回顾性研究,运用社会网络分析以及全局敏感性和不确定性分析来收集和解读有关此次疫情的医院及流行病学数据。度中心性(χ2=17.6619,P<0.0001)和中介中心性(χ2=21.4186,P<0.0001)的结果表明,传统流行病学方法与更新的统计方法在抽样对象的选择上存在差异。派系图和网络图显示,此次疫情实际上由两个独立的传播网络组成。敏感性分析表明,接触系数(k)是动态模型中的最重要因素。通过不确定性分析,我们能够更好地了解此次疫情在空间和时间上的特征及变化。我们得出结论,采用更新的方法在管理和控制传染病疫情方面显著更有效,还能节省时间和公共卫生资源,并且可广泛应用于类似的局部疫情。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f77/5522157/2ddecb929b96/oncotarget-08-43417-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验