Suppr超能文献

皮层内脑机接口中的信号无关噪声导致运动时间特性与菲茨定律不一致。

Signal-independent noise in intracortical brain-computer interfaces causes movement time properties inconsistent with Fitts' law.

作者信息

Willett Francis R, Murphy Brian A, Memberg William D, Blabe Christine H, Pandarinath Chethan, Walter Benjamin L, Sweet Jennifer A, Miller Jonathan P, Henderson Jaimie M, Shenoy Krishna V, Hochberg Leigh R, Kirsch Robert F, Ajiboye A Bolu

机构信息

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America. Louis Stokes Cleveland Department of Veterans Affairs Medical Center, FES Center of Excellence, Rehab. R&D Service, Cleveland, OH, United States of America.

出版信息

J Neural Eng. 2017 Apr;14(2):026010. doi: 10.1088/1741-2552/aa5990. Epub 2017 Feb 8.

Abstract

OBJECTIVE

Do movements made with an intracortical BCI (iBCI) have the same movement time properties as able-bodied movements? Able-bodied movement times typically obey Fitts' law: [Formula: see text] (where MT is movement time, D is target distance, R is target radius, and [Formula: see text] are parameters). Fitts' law expresses two properties of natural movement that would be ideal for iBCIs to restore: (1) that movement times are insensitive to the absolute scale of the task (since movement time depends only on the ratio [Formula: see text]) and (2) that movements have a large dynamic range of accuracy (since movement time is logarithmically proportional to [Formula: see text]).

APPROACH

Two participants in the BrainGate2 pilot clinical trial made cortically controlled cursor movements with a linear velocity decoder and acquired targets by dwelling on them. We investigated whether the movement times were well described by Fitts' law.

MAIN RESULTS

We found that movement times were better described by the equation [Formula: see text], which captures how movement time increases sharply as the target radius becomes smaller, independently of distance. In contrast to able-bodied movements, the iBCI movements we studied had a low dynamic range of accuracy (absence of logarithmic proportionality) and were sensitive to the absolute scale of the task (small targets had long movement times regardless of the [Formula: see text] ratio). We argue that this relationship emerges due to noise in the decoder output whose magnitude is largely independent of the user's motor command (signal-independent noise). Signal-independent noise creates a baseline level of variability that cannot be decreased by trying to move slowly or hold still, making targets below a certain size very hard to acquire with a standard decoder.

SIGNIFICANCE

The results give new insight into how iBCI movements currently differ from able-bodied movements and suggest that restoring a Fitts' law-like relationship to iBCI movements may require non-linear decoding strategies.

摘要

目的

使用皮层内脑机接口(iBCI)进行的运动是否具有与健全人运动相同的运动时间特性?健全人的运动时间通常遵循菲茨定律:[公式:见文本](其中MT是运动时间,D是目标距离,R是目标半径,[公式:见文本]是参数)。菲茨定律表达了自然运动的两个特性,这两个特性对于iBCI恢复运动功能来说是理想的:(1)运动时间对任务的绝对尺度不敏感(因为运动时间仅取决于[公式:见文本]的比值);(2)运动具有较大的精度动态范围(因为运动时间与[公式:见文本]成对数比例)。

方法

在BrainGate2试点临床试验中,两名参与者使用线性速度解码器进行皮层控制的光标移动,并通过在目标上停留来获取目标。我们研究了菲茨定律是否能很好地描述运动时间。

主要结果

我们发现运动时间可以用方程[公式:见文本]更好地描述,该方程描述了随着目标半径变小,运动时间如何急剧增加,而与距离无关。与健全人运动不同,我们研究的iBCI运动具有较低的精度动态范围(不存在对数比例关系),并且对任务的绝对尺度敏感(小目标无论[公式:见文本]比值如何都有较长的运动时间)。我们认为这种关系的出现是由于解码器输出中的噪声,其大小在很大程度上与用户的运动命令无关(信号无关噪声)。信号无关噪声产生了一个变异性的基线水平,无法通过试图缓慢移动或保持静止来降低,使得使用标准解码器很难获取低于一定大小的目标。

意义

这些结果为目前iBCI运动与健全人运动的差异提供了新的见解,并表明恢复iBCI运动的类似菲茨定律的关系可能需要非线性解码策略。

相似文献

2
Evaluation of a modified Fitts law brain-computer interface target acquisition task in able and motor disabled individuals.
J Neural Eng. 2009 Oct;6(5):056002. doi: 10.1088/1741-2560/6/5/056002. Epub 2009 Aug 21.
3
Feedback control policies employed by people using intracortical brain-computer interfaces.
J Neural Eng. 2017 Feb;14(1):016001. doi: 10.1088/1741-2560/14/1/016001. Epub 2016 Nov 30.
4
Children with congenital spastic hemiplegia obey Fitts' Law in a visually guided tapping task.
Exp Brain Res. 2007 Mar;177(4):431-9. doi: 10.1007/s00221-006-0698-x. Epub 2006 Sep 22.
5
Fitts' Law in the Control of Isometric Grip Force With Naturalistic Targets.
Front Psychol. 2018 Apr 26;9:560. doi: 10.3389/fpsyg.2018.00560. eCollection 2018.
6
Speech-related dorsal motor cortex activity does not interfere with iBCI cursor control.
J Neural Eng. 2020 Feb 5;17(1):016049. doi: 10.1088/1741-2552/ab5b72.
7
Extending Fitts' Law to three-dimensional obstacle-avoidance movements: support for the posture-based motion planning model.
Exp Brain Res. 2010 Nov;207(1-2):133-8. doi: 10.1007/s00221-010-2431-z. Epub 2010 Oct 8.
8
Fitts' Law is modulated by movement history.
Psychon Bull Rev. 2018 Oct;25(5):1833-1839. doi: 10.3758/s13423-017-1367-8.
9
Predictive feedback control and Fitts' law.
Biol Cybern. 2008 Mar;98(3):229-38. doi: 10.1007/s00422-007-0206-9. Epub 2008 Jan 5.
10
Explanation of Fitts' law in Reaching Movement based on Human Arm Dynamics.
Sci Rep. 2019 Dec 24;9(1):19804. doi: 10.1038/s41598-019-56016-7.

引用本文的文献

1
Long-term performance of intracortical microelectrode arrays in 14 BrainGate clinical trial participants.
medRxiv. 2025 Jul 2:2025.07.02.25330310. doi: 10.1101/2025.07.02.25330310.
2
Machine-Learning Methods for Speech and Handwriting Detection Using Neural Signals: A Review.
Sensors (Basel). 2023 Jun 14;23(12):5575. doi: 10.3390/s23125575.
3
The science and engineering behind sensitized brain-controlled bionic hands.
Physiol Rev. 2022 Apr 1;102(2):551-604. doi: 10.1152/physrev.00034.2020. Epub 2021 Sep 20.
4
Power-saving design opportunities for wireless intracortical brain-computer interfaces.
Nat Biomed Eng. 2020 Oct;4(10):984-996. doi: 10.1038/s41551-020-0595-9. Epub 2020 Aug 3.
5
Principled BCI Decoder Design and Parameter Selection Using a Feedback Control Model.
Sci Rep. 2019 Jun 20;9(1):8881. doi: 10.1038/s41598-019-44166-7.
6
A Comparison of Intention Estimation Methods for Decoder Calibration in Intracortical Brain-Computer Interfaces.
IEEE Trans Biomed Eng. 2018 Sep;65(9):2066-2078. doi: 10.1109/TBME.2017.2783358. Epub 2017 Dec 14.

本文引用的文献

1
Feedback control policies employed by people using intracortical brain-computer interfaces.
J Neural Eng. 2017 Feb;14(1):016001. doi: 10.1088/1741-2560/14/1/016001. Epub 2016 Nov 30.
2
Empirical Movement Models for Brain Computer Interfaces.
IEEE Trans Neural Syst Rehabil Eng. 2017 Jun;25(6):694-703. doi: 10.1109/TNSRE.2016.2584101. Epub 2016 Jun 30.
3
Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering.
PLoS Comput Biol. 2016 Apr 1;12(4):e1004730. doi: 10.1371/journal.pcbi.1004730. eCollection 2016 Apr.
6
Virtual typing by people with tetraplegia using a self-calibrating intracortical brain-computer interface.
Sci Transl Med. 2015 Nov 11;7(313):313ra179. doi: 10.1126/scitranslmed.aac7328.
7
Clinical translation of a high-performance neural prosthesis.
Nat Med. 2015 Oct;21(10):1142-5. doi: 10.1038/nm.3953. Epub 2015 Sep 28.
8
Advancing brain-machine interfaces: moving beyond linear state space models.
Front Syst Neurosci. 2015 Jul 28;9:108. doi: 10.3389/fnsys.2015.00108. eCollection 2015.
9
The impact of command signal power distribution, processing delays, and speed scaling on neurally-controlled devices.
J Neural Eng. 2015 Aug;12(4):046031. doi: 10.1088/1741-2560/12/4/046031. Epub 2015 Jul 14.
10
Single-unit activity, threshold crossings, and local field potentials in motor cortex differentially encode reach kinematics.
J Neurophysiol. 2015 Sep;114(3):1500-12. doi: 10.1152/jn.00293.2014. Epub 2015 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验