IEEE Trans Biomed Eng. 2018 Sep;65(9):2066-2078. doi: 10.1109/TBME.2017.2783358. Epub 2017 Dec 14.
Recent reports indicate that making better assumptions about the user's intended movement can improve the accuracy of decoder calibration for intracortical brain-computer interfaces. Several methods now exist for estimating user intent, including an optimal feedback control model, a piecewise-linear feedback control model, ReFIT, and other heuristics. Which of these methods yields the best decoding performance?
Using data from the BrainGate2 pilot clinical trial, we measured how a steady-state velocity Kalman filter decoder was affected by the choice of intention estimation method. We examined three separate components of the Kalman filter: dimensionality reduction, temporal smoothing, and output gain (speed scaling).
The decoder's dimensionality reduction properties were largely unaffected by the intention estimation method. Decoded velocity vectors differed by <5% in terms of angular error and speed vs. target distance curves across methods. In contrast, the smoothing and gain properties of the decoder were greatly affected (> 50% difference in average values). Since the optimal gain and smoothing properties are task-specific (e.g. lower gains are better for smaller targets but worse for larger targets), no one method was better for all tasks.
Our results show that, when gain and smoothing differences are accounted for, current intention estimation methods yield nearly equivalent decoders and that simple models of user intent, such as a position error vector (target position minus cursor position), perform comparably to more elaborate models. Our results also highlight that simple differences in gain and smoothing properties have a large effect on online performance and can confound decoder comparisons.
最近的报告表明,对用户预期运动做出更好的假设可以提高皮层内脑机接口解码器校准的准确性。现在有几种估计用户意图的方法,包括最优反馈控制模型、分段线性反馈控制模型、ReFIT 和其他启发式方法。这些方法中哪一种能产生最佳的解码性能?
我们使用来自 BrainGate2 试点临床试验的数据,测量了稳态速度卡尔曼滤波器解码器如何受到意图估计方法选择的影响。我们检查了卡尔曼滤波器的三个单独组件:降维、时间平滑和输出增益(速度缩放)。
解码器的降维特性受意图估计方法的影响不大。在不同的方法中,解码速度向量的角度误差和速度与目标距离曲线的差异<5%。相比之下,解码器的平滑和增益特性受到很大影响(平均值差异超过 50%)。由于最优增益和平滑特性是特定于任务的(例如,对于较小的目标,较低的增益更好,但对于较大的目标则更差),因此没有一种方法适用于所有任务。
我们的结果表明,当考虑增益和平滑差异时,当前的意图估计方法产生了几乎等效的解码器,并且用户意图的简单模型,例如位置误差向量(目标位置减去光标位置),与更复杂的模型表现相当。我们的结果还强调了增益和平滑特性的简单差异对在线性能有很大影响,并可能混淆解码器比较。