Suppr超能文献

一种用于估计轮胎-路面摩擦系数的分层估计器开发。

A hierarchical estimator development for estimation of tire-road friction coefficient.

作者信息

Zhang Xudong, Göhlich Dietmar

机构信息

Product Development Methods and Mechatronics, Technical University of Berlin, Berlin, Germany.

出版信息

PLoS One. 2017 Feb 8;12(2):e0171085. doi: 10.1371/journal.pone.0171085. eCollection 2017.

Abstract

The effect of vehicle active safety systems is subject to the friction force arising from the contact of tires and the road surface. Therefore, an adequate knowledge of the tire-road friction coefficient is of great importance to achieve a good performance of these control systems. This paper presents a tire-road friction coefficient estimation method for an advanced vehicle configuration, four-motorized-wheel electric vehicles, in which the longitudinal tire force is easily obtained. A hierarchical structure is adopted for the proposed estimation design. An upper estimator is developed based on unscented Kalman filter to estimate vehicle state information, while a hybrid estimation method is applied as the lower estimator to identify the tire-road friction coefficient using general regression neural network (GRNN) and Bayes' theorem. GRNN aims at detecting road friction coefficient under small excitations, which are the most common situations in daily driving. GRNN is able to accurately create a mapping from input parameters to the friction coefficient, avoiding storing an entire complex tire model. As for large excitations, the estimation algorithm is based on Bayes' theorem and a simplified "magic formula" tire model. The integrated estimation method is established by the combination of the above-mentioned estimators. Finally, the simulations based on a high-fidelity CarSim vehicle model are carried out on different road surfaces and driving maneuvers to verify the effectiveness of the proposed estimation method.

摘要

车辆主动安全系统的效果受到轮胎与路面接触产生的摩擦力的影响。因此,充分了解轮胎-路面摩擦系数对于实现这些控制系统的良好性能至关重要。本文提出了一种针对先进车辆配置——四轮电动车辆的轮胎-路面摩擦系数估计方法,在这种车辆中纵向轮胎力易于获取。所提出的估计设计采用分层结构。基于无迹卡尔曼滤波器开发了一个上层估计器来估计车辆状态信息,而采用混合估计方法作为下层估计器,使用广义回归神经网络(GRNN)和贝叶斯定理来识别轮胎-路面摩擦系数。GRNN旨在检测日常驾驶中最常见的小激励情况下的道路摩擦系数。GRNN能够准确地创建从输入参数到摩擦系数的映射,避免存储整个复杂的轮胎模型。对于大激励情况,估计算法基于贝叶斯定理和简化的“魔术公式”轮胎模型。通过上述估计器的组合建立了综合估计方法。最后,基于高保真CarSim车辆模型在不同路面和驾驶操作上进行了仿真,以验证所提出估计方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a1b/5298280/0b0d81f6d6bf/pone.0171085.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验