Specht D F
Lockheed Palo Alto Res. Lab., CA.
IEEE Trans Neural Netw. 1991;2(6):568-76. doi: 10.1109/72.97934.
A memory-based network that provides estimates of continuous variables and converges to the underlying (linear or nonlinear) regression surface is described. The general regression neural network (GRNN) is a one-pass learning algorithm with a highly parallel structure. It is shown that, even with sparse data in a multidimensional measurement space, the algorithm provides smooth transitions from one observed value to another. The algorithmic form can be used for any regression problem in which an assumption of linearity is not justified.
本文描述了一种基于记忆的网络,该网络可提供连续变量的估计值,并收敛于潜在的(线性或非线性)回归曲面。广义回归神经网络(GRNN)是一种具有高度并行结构的单遍学习算法。结果表明,即使在多维测量空间中数据稀疏的情况下,该算法也能提供从一个观测值到另一个观测值的平滑过渡。该算法形式可用于任何线性假设不合理的回归问题。