Bhardwaj Vinod K, Dhawan Shweta
Department of Mathematics, Kurukshetra University, Kurukshetra, 136119 India.
Department of Mathematics, KVA DAV College for Women, Karnal, 132001 India.
J Inequal Appl. 2017;2017(1):25. doi: 10.1186/s13660-017-1294-2. Epub 2017 Jan 23.
The main object of this paper is to introduce and study a new concept of -Wijsman lacunary statistical convergence of sequences of sets, where is an unbounded modulus. The definition of Wijsman lacunary strong convergence of sequences of sets is extended to a definition of Wijsman lacunary strong convergence with respect to a modulus for sequences of sets and it is shown that, under certain conditions on a modulus , the concepts of Wijsman lacunary strong convergence with respect to a modulus and -Wijsman lacunary statistical convergence are equivalent on bounded sequences. We further characterize those for which [Formula: see text], where [Formula: see text] and [Formula: see text] denote the sets of all -Wijsman lacunary statistically convergent sequences and -Wijsman statistically convergent sequences, respectively.
本文的主要目的是引入并研究集合序列的 - Wijsman 缺项统计收敛这一新概念,其中 是一个无界模。集合序列的 Wijsman 缺项强收敛定义被扩展为关于集合序列模的 Wijsman 缺项强收敛定义,并且表明,在模 的某些条件下,关于模 的 Wijsman 缺项强收敛概念与 - Wijsman 缺项统计收敛概念在有界序列上是等价的。我们进一步刻画了那些满足[公式:见原文]的 ,其中[公式:见原文]和[公式:见原文]分别表示所有 - Wijsman 缺项统计收敛序列集和 - Wijsman 统计收敛序列集。