Suppr超能文献

从扩展 X 射线吸收精细结构中获得非斑块化的原子间距离策略。

Non-patchy strategy for inter-atomic distances from Extended X-ray Absorption Fine Structure.

机构信息

Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, L8S4L7, Canada.

School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi, China.

出版信息

Sci Rep. 2017 Feb 9;7:42143. doi: 10.1038/srep42143.

Abstract

Extended X-ray Absorption Fine Structure (EXAFS) has been one of the few structural probes available for crystalline, non-crystalline and even highly disordered specimens. However, the data analysis involves a patchy and tinkering process, including back-and-forth fitting and filtering, leading to ambiguous answers sometimes. Here we try to resolve this long standing problem, to extract the inter-atomic distances from the experimental data by a single step minimization, in order to replace the tedious and tinkering process. The new strategy is built firmly by the mathematical logic, and made straightforward and undeniable. The finding demonstrates that it is possible to break off from the traditional patchy model fitting, and to remove the logical confusion of a priori prediction of the structure to be matched with experimental data, making it a much more powerful technique than the existing methods. The new method is expected to benefit EXAFS users covering all disciplines. Also, it is anticipated that the current work to be the motivation and inspiration to the further efforts.

摘要

扩展 X 射线吸收精细结构(EXAFS)一直是为数不多的适用于结晶、非晶态甚至高度无序样品的结构探针之一。然而,数据分析涉及到一个拼凑和修补的过程,包括来回拟合和过滤,有时会导致答案不明确。在这里,我们试图解决这个长期存在的问题,通过单次最小化从实验数据中提取原子间距离,以取代繁琐和修补的过程。这个新策略是由数学逻辑构建的,并且是直接的和不可否认的。研究结果表明,有可能打破传统的拼凑模型拟合,消除结构的先验预测与实验数据匹配的逻辑混乱,使其成为比现有方法更强大的技术。预计这种新方法将使涵盖所有学科的 EXAFS 用户受益。此外,预计当前的工作将为进一步的努力提供动力和灵感。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5562/5299603/04c5217d17c4/srep42143-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验