Suppr超能文献

在临床前模型中对结直肠癌进行分子剖析,确定了预测对 EGFR 抑制剂敏感性的生物标志物。

Molecular dissection of colorectal cancer in pre-clinical models identifies biomarkers predicting sensitivity to EGFR inhibitors.

机构信息

Alacris Theranostics GmbH, Fabeckstr. 60-62, D-14195 Berlin, Germany.

Max Planck Institute for Molecular Genetics, Department of Vertebrate Genomics/Otto Warburg Laboratory Gene Regulation and Systems Biology of cancer, Ihnestrasse 73, D-14195 Berlin, Germany.

出版信息

Nat Commun. 2017 Feb 10;8:14262. doi: 10.1038/ncomms14262.

Abstract

Colorectal carcinoma represents a heterogeneous entity, with only a fraction of the tumours responding to available therapies, requiring a better molecular understanding of the disease in precision oncology. To address this challenge, the OncoTrack consortium recruited 106 CRC patients (stages I-IV) and developed a pre-clinical platform generating a compendium of drug sensitivity data totalling >4,000 assays testing 16 clinical drugs on patient-derived in vivo and in vitro models. This large biobank of 106 tumours, 35 organoids and 59 xenografts, with extensive omics data comparing donor tumours and derived models provides a resource for advancing our understanding of CRC. Models recapitulate many of the genetic and transcriptomic features of the donors, but defined less complex molecular sub-groups because of the loss of human stroma. Linking molecular profiles with drug sensitivity patterns identifies novel biomarkers, including a signature outperforming RAS/RAF mutations in predicting sensitivity to the EGFR inhibitor cetuximab.

摘要

结直肠癌是一种异质性实体肿瘤,只有一部分肿瘤对现有治疗方法有反应,因此需要在精准肿瘤学中更好地了解疾病的分子机制。为了应对这一挑战,OncoTrack 联盟招募了 106 名 CRC 患者(I-IV 期),并开发了一个临床前平台,该平台生成了一个药物敏感性数据摘要,共包含超过 4000 项检测 16 种临床药物在患者来源的体内和体外模型中的药物敏感性检测。该大型生物库包含 106 个肿瘤、35 个类器官和 59 个异种移植物,具有广泛的比较供体肿瘤和衍生模型的组学数据,为深入了解 CRC 提供了资源。模型重现了供体的许多遗传和转录组特征,但由于失去了人类基质,因此定义的分子亚群较为简单。将分子谱与药物敏感性模式联系起来,可以确定新的生物标志物,包括一个表现优于 RAS/RAF 突变的特征,可用于预测对 EGFR 抑制剂西妥昔单抗的敏感性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验