Suppr超能文献

磷酸化 PICK-SNP:量化氨基酸变异对蛋白质磷酸化的影响。

PhosphoPICK-SNP: quantifying the effect of amino acid variants on protein phosphorylation.

机构信息

School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia.

Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia.

出版信息

Bioinformatics. 2017 Jun 15;33(12):1773-1781. doi: 10.1093/bioinformatics/btx072.

Abstract

MOTIVATION

Genome-wide association studies are identifying single nucleotide variants (SNVs) linked to various diseases, however the functional effect caused by these variants is often unknown. One potential functional effect, the loss or gain of protein phosphorylation sites, can be induced through variations in key amino acids that disrupt or introduce valid kinase binding patterns. Current methods for predicting the effect of SNVs on phosphorylation operate on the sequence content of reference and variant proteins. However, consideration of the amino acid sequence alone is insufficient for predicting phosphorylation change, as context factors determine kinase-substrate selection.

RESULTS

We present here a method for quantifying the effect of SNVs on protein phosphorylation through an integrated system of motif analysis and context-based assessment of kinase targets. By predicting the effect that known variants across the proteome have on phosphorylation, we are able to use this background of proteome-wide variant effects to quantify the significance of novel variants for modifying phosphorylation. We validate our method on a manually curated set of phosphorylation change-causing variants from the primary literature, showing that the method predicts known examples of phosphorylation change at high levels of specificity. We apply our approach to data-sets of variants in phosphorylation site regions, showing that variants causing predicted phosphorylation loss are over-represented among disease-associated variants.

AVAILABILITY AND IMPLEMENTATION

The method is freely available as a web-service at the website http://bioinf.scmb.uq.edu.au/phosphopick/snp.

CONTACT

m.boden@uq.edu.au.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

全基因组关联研究正在确定与各种疾病相关的单核苷酸变异 (SNV),然而这些变异引起的功能影响通常是未知的。一种潜在的功能影响是蛋白质磷酸化位点的丢失或获得,这可能是由于关键氨基酸的变异破坏或引入了有效的激酶结合模式。目前预测 SNV 对磷酸化影响的方法是基于参考蛋白和变异蛋白的序列内容进行操作的。然而,仅考虑氨基酸序列不足以预测磷酸化变化,因为上下文因素决定了激酶-底物的选择。

结果

我们在这里提出了一种通过基序分析和基于上下文的激酶靶标评估的综合系统来量化 SNV 对蛋白质磷酸化影响的方法。通过预测整个蛋白质组中已知变体对磷酸化的影响,我们能够利用蛋白质组范围内变体影响的背景来量化新型变体对修饰磷酸化的重要性。我们在来自主要文献的磷酸化改变引起的变体的手工整理集中验证了我们的方法,结果表明该方法能够高度特异性地预测已知的磷酸化变化实例。我们将我们的方法应用于磷酸化位点区域的变体数据集,结果表明导致预测磷酸化丢失的变体在疾病相关变体中过度表达。

可用性和实施

该方法可作为一个网络服务在网站 http://bioinf.scmb.uq.edu.au/phosphopick/snp 上免费使用。

联系方式

m.boden@uq.edu.au

补充信息

补充数据可在 Bioinformatics 在线获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验