Suppr超能文献

功能微凝胶和微凝胶系统。

Functional Microgels and Microgel Systems.

机构信息

Institute of Physical Chemistry, RWTH Aachen University , Landoltweg 2, 52056 Aachen, Germany.

DWI-Leibniz-Institute for Interactive Materials , 52074 Aachen, Germany.

出版信息

Acc Chem Res. 2017 Feb 21;50(2):131-140. doi: 10.1021/acs.accounts.6b00544. Epub 2017 Feb 10.

Abstract

Microgels are macromolecular networks swollen by the solvent in which they are dissolved. They are unique systems that are distinctly different from common colloids, such as, e.g., rigid nanoparticles, flexible macromolecules, micelles, or vesicles. The size of the microgel networks is in the range of several micrometers down to nanometers (then sometimes called "nanogels"). In a collapsed state, they might resemble hard colloids but they can still contain significant amounts of solvent. When swollen, they are soft and have a fuzzy surface with dangling chains. The presence of cross-links provides structural integrity, in contrast to linear and (hyper)branched polymers. Obviously, the cross-linker content will allow control of whether microgels behave more "colloidal" or "macromolecular". The combination of being soft and porous while still having a stable structure through the cross-linked network allows for designing microgels that have the same total chemical composition, but different properties due to a different architecture. Microgels based, e.g., on two monomers but have either statistical spatial distribution, or a core-shell or hollow-two-shell morphology will display very different properties. Microgels provide the possibility to introduce chemical functionality at different positions. Combining architectural diversity and compartmentalization of reactive groups enables thus short-range coexistence of otherwise instable combinations of chemical reactivity. The open microgel structure is beneficial for uptake-release purposes of active substances. In addition, the openness allows site-selective integration of active functionalities like reactive groups, charges, or markers by postmodification processes. The unique ability of microgels to retain their colloidal stability and swelling degree both in water and in many organic solvents allows use of different chemistries for the modification of microgel structure. The capability of microgels to adjust both their shape and volume in response to external stimuli (e.g., temperature, ionic strength and composition, pH, electrochemical stimulus, pressure, light) provides the opportunity to reversibly tune their physicochemical properties. From a physics point of view, microgels are particularly intriguing and challenging, since their intraparticle properties are intimately linked to their interparticle behavior. Microgels, which reveal interface activity without necessarily being amphiphilic, develop even more complex behavior when located at fluid or solid interfaces: the sensitivity of microgels to various stimuli allows, e.g., the modulation of emulsion stability, adhesion, sensing, and filtration. Hence, we envision an ever-increasing relevance of microgels in these fields including biomedicine and process technology. In sum, microgels unite properties of very different classes of materials. Microgels can be based on very different (bio)macromolecules such as, e.g., polysaccharides, peptides, or DNA, as well as on synthetic polymers. This Account focuses on synthetic microgels (mainly based on acrylamides); however, the general, fundamental features of microgels are independent of the chemical nature of the building moieties. Microgels allow combining features of chemical functionality, structural integrity, macromolecular architecture, adaptivity, permeability, and deformability in a unique way to include the "best" of the colloidal, polymeric, and surfactant worlds. This will open the door for novel applications in very different fields such as, e.g., in sensors, catalysis, and separation technology.

摘要

微凝胶是由溶剂溶胀的高分子网络。它们是独特的系统,与常见的胶体(例如刚性纳米粒子、柔性大分子、胶束或囊泡)明显不同。微凝胶网络的大小范围从几微米到纳米(此时有时称为“纳米凝胶”)。在坍塌状态下,它们可能类似于硬胶体,但仍可以包含大量溶剂。溶胀时,它们柔软,表面毛茸茸,有悬垂链。交联的存在提供了结构完整性,与线性和(超)支化聚合物形成对比。显然,交联剂的含量将允许控制微凝胶是更“胶体”还是“高分子”。柔软和多孔的结合,同时通过交联网络保持稳定的结构,允许设计具有相同总化学组成但由于不同结构而具有不同性质的微凝胶。基于例如两种单体的微凝胶,但具有统计空间分布或核壳或中空双壳形态,将表现出非常不同的性质。微凝胶提供了在不同位置引入化学功能的可能性。通过将架构多样性和反应性基团的分区结合起来,从而实现了否则不稳定的化学反应性组合的短程共存。微凝胶的开放结构有利于活性物质的摄取-释放。此外,开放性允许通过后修饰过程选择性地整合活性官能团,如反应性基团、电荷或标记物。微凝胶保留其胶体稳定性和在水和许多有机溶剂中溶胀度的独特能力允许使用不同的化学方法来修饰微凝胶结构。微凝胶能够响应外部刺激(例如温度、离子强度和组成、pH 值、电化学刺激、压力、光)来调节其形状和体积,这为其物理化学性质的可逆调节提供了机会。从物理学的角度来看,微凝胶特别有趣和具有挑战性,因为其颗粒内的性质与其颗粒间的行为密切相关。在流体或固体界面处定位时,即使没有必要具有两亲性,显示界面活性的微凝胶也会表现出更复杂的行为:微凝胶对各种刺激的敏感性允许例如调节乳液稳定性、粘附、传感和过滤。因此,我们设想微凝胶在包括生物医学和过程技术在内的这些领域中的相关性会越来越大。总之,微凝胶将非常不同类别的材料的性质结合在一起。微凝胶可以基于非常不同的(生物)大分子,例如多糖、肽或 DNA,以及合成聚合物。本专题介绍主要基于丙烯酰胺的合成微凝胶;然而,微凝胶的一般基本特征与构建部分的化学性质无关。微凝胶允许以独特的方式结合化学功能、结构完整性、大分子架构、适应性、渗透性和可变形性,以包含胶体、聚合物和表面活性剂世界的“最佳”特性。这将为非常不同领域的新型应用打开大门,例如传感器、催化和分离技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验