Reinaldi Julia S, Andrada Heber E, Cunha Ana F A P, Fico Bruno A, Alves Felipe B, P Orenha Renato, Parreira Renato L T, Pires Regina H, Vaca Chávez Fabián, Tissera Carolina E, Fernando Silva O, Fernandez Mariana A, Passos Aline R, Molina Eduardo F
Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, Franca, SP 14404-600, Brazil.
Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina.
ACS Polym Au. 2025 Jul 25;5(4):406-419. doi: 10.1021/acspolymersau.5c00037. eCollection 2025 Aug 13.
Polymeric nanomaterials have emerged as promising carriers for drug delivery systems, offering improved therapeutic efficacy and reduced toxicity. In this study, we present an environmentally friendly and scalable approach for engineering nanogels as an innovative delivery platform for Amphotericin B (AmB), which is a potent antifungal agent. The nanogel system, named NanoT, was synthesized via an amine-epoxide reaction, enabling effective encapsulation and sustained release of AmB. Comprehensive physicochemical characterization was conducted using transmission electron microscopy (TEM), dynamic light scattering (DLS), ζ potential analysis, proton nuclear magnetic resonance (1H-NMR), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), and synchrotron-based ultra-small angle X-ray scattering (USAXS). These analyses confirmed the successful formation of spherical nanogels and provided insights into their structural features. Additionally, molecular simulations indicated noncovalent interactions between AmB and the nanogel particles, supporting polymer-drug interactions. The NanoT system achieved an AmB loading capacity of approximately 55%. Notably, encapsulation promoted the formation of AmB superaggregates, which facilitated a controlled release of the active drug, leading to a 4-fold enhancement in antifungal activity. Mechanistic studies suggest that the antifungal efficacy of NanoT is attributed to both the sustained release of AmB and the electrostatic interactions with fungal cell surfaces. Overall, this study demonstrates the potential of amine-epoxide-based nanogels as effective carriers for antifungal therapeutics and contributes significantly to the development of advanced polymer-based drug delivery systems.
聚合物纳米材料已成为药物递送系统中颇具前景的载体,具有更高的治疗效果和更低的毒性。在本研究中,我们提出了一种环境友好且可扩展的方法,用于构建纳米凝胶,作为两性霉素B(AmB,一种强效抗真菌剂)的创新递送平台。名为NanoT的纳米凝胶系统通过胺 - 环氧化物反应合成,能够有效包封和持续释放AmB。使用透射电子显微镜(TEM)、动态光散射(DLS)、ζ电位分析、质子核磁共振(1H - NMR)、原子力显微镜(AFM)、傅里叶变换红外光谱(FTIR)和基于同步加速器的超小角X射线散射(USAXS)进行了全面的物理化学表征。这些分析证实了球形纳米凝胶的成功形成,并提供了其结构特征的见解。此外,分子模拟表明AmB与纳米凝胶颗粒之间存在非共价相互作用,支持聚合物 - 药物相互作用。NanoT系统实现了约55%的AmB负载量。值得注意的是,包封促进了AmB超聚集体的形成,这有助于活性药物的控释,导致抗真菌活性提高了4倍。机理研究表明,NanoT的抗真菌功效归因于AmB的持续释放以及与真菌细胞表面的静电相互作用。总体而言,本研究证明了基于胺 - 环氧化物的纳米凝胶作为抗真菌治疗有效载体的潜力,并为先进的基于聚合物的药物递送系统的发展做出了重大贡献。