Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99354, United States.
School of Environmental and Chemical Engineering, Tianjin Polytechnic University , Tianjin 300387, China.
Nano Lett. 2017 Mar 8;17(3):1417-1424. doi: 10.1021/acs.nanolett.6b04371. Epub 2017 Feb 15.
Instability of carbon-based oxygen electrodes and incomplete decomposition of LiCO during charge process are critical barriers for rechargeable Li-O batteries. Here we report the complete decomposition of LiCO in Li-O batteries using the ultrafine iridium-decorated boron carbide (Ir/BC) nanocomposite as a noncarbon based oxygen electrode. The systematic investigation on charging the LiCO preloaded Ir/BC electrode in an ether-based electrolyte demonstrates that the Ir/BC electrode can decompose LiCO with an efficiency close to 100% at a voltage below 4.37 V. In contrast, the bare BC without Ir electrocatalyst can only decompose 4.7% of the preloaded LiCO. Theoretical analysis indicates that the high efficiency decomposition of LiCO can be attributed to the synergistic effects of Ir and BC. Ir has a high affinity for oxygen species, which could lower the energy barrier for electrochemical oxidation of LiCO. BC exhibits much higher chemical and electrochemical stability than carbon-based electrodes and high catalytic activity for Li-O reactions. A Li-O battery using Ir/BC as the oxygen electrode material shows highly enhanced cycling stability than those using the bare BC oxygen electrode. Further development of these stable oxygen-electrodes could accelerate practical applications of Li-O batteries.
在可充电 Li-O 电池中,碳基氧电极的不稳定性和 LiCO 在充电过程中的不完全分解是关键的障碍。在这里,我们报告了使用超精细的铱修饰的碳化硼(Ir/BC)纳米复合材料作为非碳基氧电极,完全分解 Li-O 电池中的 LiCO。在醚基电解质中对预加载 Ir/BC 电极的 LiCO 进行充电的系统研究表明,Ir/BC 电极可以在低于 4.37 V 的电压下以接近 100%的效率分解 LiCO。相比之下,没有 Ir 电催化剂的裸 BC 只能分解预加载 LiCO 的 4.7%。理论分析表明,LiCO 的高效分解归因于 Ir 和 BC 的协同效应。Ir 对氧物种具有高亲和力,这可以降低 LiCO 电化学氧化的能量障碍。BC 表现出比碳基电极更高的化学和电化学稳定性以及对 Li-O 反应的高催化活性。使用 Ir/BC 作为氧电极材料的 Li-O 电池显示出比使用裸 BC 氧电极的电池更高的循环稳定性。这些稳定氧电极的进一步发展可能会加速 Li-O 电池的实际应用。