Gao Yunfei, Wang Xijun, Liu Junchen, Huang Chuande, Zhao Kun, Zhao Zengli, Wang Xiaodong, Li Fanxing
North Carolina State University, Campus Box 7905, Raleigh, NC 27695-7905, USA.
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China.
Sci Adv. 2020 Apr 24;6(17):eaaz9339. doi: 10.1126/sciadv.aaz9339. eCollection 2020 Apr.
Acceptor-doped, redox-active perovskite oxides such as LaSrFeO (LSF) are active for ethane oxidation to CO but show poor selectivity to ethylene. This article reports molten LiCO as an effective "promoter" to modify LSF for chemical looping-oxidative dehydrogenation (CL-ODH) of ethane. Under the working state, the redox catalyst is composed of a molten LiCO layer covering the solid LSF substrate. The molten layer facilitates the transport of active peroxide (O ) species formed on LSF while blocking the nonselective sites. Spectroscopy measurements and density functional theory calculations indicate that Fe→Fe transition is responsible for the peroxide formation, which results in both exothermic ODH and air reoxidation steps. With >90% ethylene selectivity, up to 59% ethylene yield, and favorable heat of reactions, the core-shell redox catalyst has an excellent potential to be effective for intensified ethane conversion. The mechanistic findings also provide a generalized approach for designing CL-ODH redox catalysts.
受主掺杂的、具有氧化还原活性的钙钛矿氧化物,如镧锶铁氧体(LSF),对乙烷氧化生成CO具有活性,但对乙烯的选择性较差。本文报道了熔融的LiCO作为一种有效的“促进剂”来修饰LSF,用于乙烷的化学链氧化脱氢(CL-ODH)。在工作状态下,氧化还原催化剂由覆盖在固体LSF基底上的熔融LiCO层组成。该熔融层促进了在LSF上形成的活性过氧化物(O)物种的传输,同时阻断了非选择性位点。光谱测量和密度泛函理论计算表明,Fe→Fe转变是过氧化物形成的原因,这导致了放热的ODH和空气再氧化步骤。该核壳氧化还原催化剂具有>90%的乙烯选择性、高达59%的乙烯产率和良好的反应热,在强化乙烷转化方面具有优异的潜力。这些机理研究结果还为设计CL-ODH氧化还原催化剂提供了一种通用方法。