ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology , 08860 Castelldefels (Barcelona), Spain.
Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière , F-69622 Lyon, France.
Nano Lett. 2017 Mar 8;17(3):1748-1755. doi: 10.1021/acs.nanolett.6b05065. Epub 2017 Feb 17.
Mechanical resonators based on low-dimensional materials provide a unique platform for exploring a broad range of physical phenomena. The mechanical vibrational states are indeed extremely sensitive to charges, spins, photons, and adsorbed masses. However, the roadblock is often the readout of the resonator, because the detection of the vibrational states becomes increasingly difficult for smaller resonators. Here, we report an unprecedentedly sensitive method to detect nanotube resonators with effective masses in the 10 kg range. We use the beam of an electron microscope to resolve the mechanical fluctuations of a nanotube in real-time for the first time. We obtain full access to the thermally driven Brownian motion of the resonator, both in space and time domains. Our results establish the viability of carbon nanotube resonator technology at room temperature and pave the way toward the observation of novel thermodynamics regimes and quantum effects in nanomechanics.
基于低维材料的机械谐振器为探索广泛的物理现象提供了一个独特的平台。机械振动状态确实对电荷、自旋、光子和吸附质量极为敏感。然而,瓶颈通常是谐振器的读出,因为对于较小的谐振器,振动状态的检测变得越来越困难。在这里,我们报告了一种前所未有的方法,可以检测有效质量在 10kg 范围内的纳米管谐振器。我们首次使用电子显微镜的光束实时解析纳米管的机械波动。我们全面了解了谐振器的热驱动布朗运动,包括在空间和时间域上。我们的结果确立了室温下碳纳米管谐振器技术的可行性,并为观察纳米力学中的新热力学状态和量子效应铺平了道路。