Xu Bo, Zhang Pengcheng, Zhu Jiankai, Liu Zuheng, Eichler Alexander, Zheng Xu-Qian, Lee Jaesung, Dash Aneesh, More Swapnil, Wu Song, Wang Yanan, Jia Hao, Naik Akshay, Bachtold Adrian, Yang Rui, Feng Philip X-L, Wang Zenghui
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu610054, China.
University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai200240, China.
ACS Nano. 2022 Oct 25;16(10):15545-15585. doi: 10.1021/acsnano.2c01673. Epub 2022 Sep 2.
The quest for realizing and manipulating ever smaller man-made movable structures and dynamical machines has spurred tremendous endeavors, led to important discoveries, and inspired researchers to venture to previously unexplored grounds. Scientific feats and technological milestones of miniaturization of mechanical structures have been widely accomplished by advances in machining and sculpturing ever shrinking features out of bulk materials such as silicon. With the flourishing multidisciplinary field of low-dimensional nanomaterials, including one-dimensional (1D) nanowires/nanotubes and two-dimensional (2D) atomic layers such as graphene/phosphorene, growing interests and sustained effort have been devoted to creating mechanical devices toward the ultimate limit of miniaturization─genuinely down to the molecular or even atomic scale. These ultrasmall movable structures, particularly nanomechanical resonators that exploit the vibratory motion in these 1D and 2D nano-to-atomic-scale structures, offer exceptional device-level attributes, such as ultralow mass, ultrawide frequency tuning range, broad dynamic range, and ultralow power consumption, thus holding strong promises for both fundamental studies and engineering applications. In this Review, we offer a comprehensive overview and summary of this vibrant field, present the state-of-the-art devices and evaluate their specifications and performance, outline important achievements, and postulate future directions for studying these miniscule yet intriguing molecular-scale machines.
对实现和操控尺寸不断减小的人造可移动结构及动态机器的追求,激发了巨大的努力,带来了重要发现,并促使研究人员涉足此前未探索的领域。通过在诸如硅等块状材料上加工和雕刻尺寸不断缩小的特征,机械结构小型化的科学壮举和技术里程碑已广泛达成。随着包括一维(1D)纳米线/纳米管和二维(2D)原子层(如石墨烯/磷烯)在内的低维纳米材料这一多学科领域蓬勃发展,人们对制造迈向小型化极限——真正达到分子甚至原子尺度——的机械设备产生了越来越浓厚的兴趣,并持续投入努力。这些超小的可移动结构,特别是利用这些一维和二维纳米至原子尺度结构中的振动运动的纳米机械谐振器,具有诸如超低质量、超宽频率调谐范围、宽动态范围和超低功耗等卓越的器件级特性,因此在基础研究和工程应用方面都极具前景。在本综述中,我们对这个充满活力的领域进行全面概述和总结,介绍最先进的器件并评估其规格和性能,概述重要成就,并推测研究这些微小却引人入胜的分子尺度机器的未来方向。