Suppr超能文献

The effects of calcium and magnesium in hyperkalemic cardioplegic solutions on myocardial preservation.

作者信息

Geffin G A, Love T R, Hendren W G, Torchiana D F, Titus J S, Redonnett B E, O'Keefe D D, Daggett W M

机构信息

Department of Surgery, Massachusetts General Hospital, Boston 02114.

出版信息

J Thorac Cardiovasc Surg. 1989 Aug;98(2):239-50.

PMID:2818723
Abstract

Sustained left ventricular pressure development during each infusion of a cold calcium-containing hyperkalemic cardioplegic solution has been observed in rat hearts. The present study was undertaken to relate such contraction (i.e., increase in resting pressure) to myocardial preservation and to the calcium and magnesium contents of a crystalloid hyperkalemic cardioplegic solution. Isolated perfused rat hearts with a left ventricular isovolumic balloon were arrested at 8 degrees C by the fully oxygenated cardioplegic solution infused every 15 minutes for 2 hours. Cardioplegic solutions containing ionized calcium in concentrations of 0, 0.1, or 1.2 mmol/L were each studied with (groups 2, 4, and 6) and without (groups 1, 3, and 5) the addition of magnesium (16 mmol/L). Hearts arrested by the cardioplegic solution with no calcium or magnesium (group 1) developed a pressure (averaged over the second to eighth infusion and expressed as percent prearrest left ventricular pressure) of 6.0% +/- 0.4% during cardioplegic infusions. This solution maintained end-arrest myocardial adenosine triphosphate (13.1 +/- 1.0 nmol/mg dry weight) and phosphocreatine (21.7 +/- 2.8 nmol/mg dry weight) contents near the prearrest contents and preserved left ventricular function at 95% +/- 3% of prearrest developed left ventricular pressure at 15 minutes of reperfusion at 37 degrees C. Calcium (groups 3 and 5) increased pressure development during cardioplegic infusions (10.4% +/- 0.5% and 15.1% +/- 0.9%), depleted adenosine triphosphate (7.2 +/- 1.0 and 7.4 +/- 0.9) and phosphocreatine (13.3 +/- 1.8 and 10.7 +/- 1.5), and depressed left ventricular functional recovery (71% +/- 1% and 73% +/- 3%). Magnesium alone (group 2) decreased pressure development during cardioplegic infusions (3.0% +/- 0.3%), maintained adenosine triphosphate (15.6 +/- 0.9), augmented phosphocreatine (38.3 +/- 1.2), and preserved left ventricular function (99% +/- 4%). Magnesium added to calcium (groups 4 and 6) prevented the calcium-induced increased pressure development during cardioplegic infusions (4.0% +/- 0.5% and 6.7% +/- 0.6%), maintained adenosine triphosphate (13.6 +/- 1.4 and 14.9 +/- 0.7), augmented phosphocreatine (31.3 +/- 1.6 and 32.2 +/- 2.4), and ameliorated the depression of functional recovery (82% +/- 2% and 86% +/- 2%). These data suggest that left ventricular pressure development during arrest contributed to calcium-induced energy depletion and impairment of functional recovery and that these deleterious effects were inhibited by magnesium. The inhibitory effects of magnesium on left ventricular pressure development were rapidly reversed on reperfusion. The data support the addition

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验