MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.
MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.
Biochim Biophys Acta Biomembr. 2017 May;1859(5):879-887. doi: 10.1016/j.bbamem.2017.02.003. Epub 2017 Feb 8.
Voltage-gated sodium (Na) channels are critical in the signal transduction of excitable cells. In this work, we modeled the open conformation for the pore domain of a prokaryotic Na channel (NaRh), and used molecular dynamics simulations to track the translocation of dozens of Na ions through the channel in the presence of a physiological transmembrane ion concentration gradient and a transmembrane electrical field that was closer to the physiological one than previous studies. Channel conductance was then estimated from simulations on the wide-type and DEKA mutant of NaRh. Interestingly, the conductivity predicted from the DEKA mutant agrees well with experimental measurement on eukaryotic Na1.4 channel. Moreover, the wide-type and DEKA mutant of NaRh exhibited markedly distinct ion permeation patterns, which thus implies the mechanistic difference between prokaryotic and eukaryotic Na channels.
电压门控钠离子(Na)通道在可兴奋细胞的信号转导中至关重要。在这项工作中,我们对原核 Na 通道(NaRh)的孔域的开放构象进行了建模,并使用分子动力学模拟在接近生理条件的跨膜离子浓度梯度和跨膜电场下跟踪数十个 Na 离子在通道中的转运情况,这比以前的研究更接近生理条件。然后,我们根据 NaRh 的野生型和 DEKA 突变体的模拟结果来估计通道电导。有趣的是,DEKA 突变体的电导率与真核 Na1.4 通道的实验测量值吻合得很好。此外,NaRh 的野生型和 DEKA 突变体表现出明显不同的离子渗透模式,这表明原核和真核 Na 通道的机制存在差异。