Suppr超能文献

水合作用和氨基酸相互作用对hNa1.5通道离子渗透机制的作用

Role of Hydration and Amino Acid Interactions on the Ion Permeation Mechanism in the hNa1.5 Channel.

作者信息

Anguita-Ortiz Nuria, Nogueira Juan J

机构信息

Department of Chemistry, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente, 7, 28049 Madrid, Spain.

IADCHEM, Institute for Advanced Research in Chemistry, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente, 7, 28049 Madrid, Spain.

出版信息

Biochemistry. 2025 Jan 7;64(1):47-56. doi: 10.1021/acs.biochem.4c00664. Epub 2024 Dec 17.

Abstract

This study explores the ion selectivity and conduction mechanisms of the hNa1.5 sodium channel using classical molecular dynamics simulations under an externally applied electric field. Our findings reveal distinct conduction mechanisms for Na and K, primarily driven by differences in their hydration states when they diffuse close to the channel's selective filter (DEKA) and extracellular ring (EEDD). The Na ions undergo partial dehydration in the EEDD region, followed by a rehydration step in the DEKA ring, resulting in longer retention times and a deeper free energy minimum compared to K. Conversely, the K ions exhibit a continuous dehydration process, facilitating a smoother passage through these key regions. These results indicate that ion selectivity and conductance are primarily governed by solvation dynamics, which, in turn, depend on the interactions with key charged residues within the channel. Additionally, we show that the delicate energetic balance between the interactions of the ions with the protein residues and with their solvation shells during the dehydration and rehydration processes is not properly captured by the force field. As a consequence, the selectivity of the channel is not well described, indicating that more accurate computational models must be applied to simulate ion conduction through eukaryotic Na channels.

摘要

本研究利用外部施加电场下的经典分子动力学模拟,探索了hNa1.5钠通道的离子选择性和传导机制。我们的研究结果揭示了Na和K不同的传导机制,主要是由它们在扩散至通道选择性过滤器(DEKA)和细胞外环(EEDD)附近时水合状态的差异所驱动。Na离子在EEDD区域经历部分脱水,随后在DEKA环中进行再水化步骤,与K相比,导致更长的保留时间和更深的自由能最小值。相反,K离子表现出连续的脱水过程,有助于更顺畅地通过这些关键区域。这些结果表明,离子选择性和电导率主要由溶剂化动力学决定,而溶剂化动力学又取决于与通道内关键带电残基的相互作用。此外,我们表明,在脱水和再水化过程中,离子与蛋白质残基及其溶剂化壳层之间相互作用的微妙能量平衡未被力场正确捕捉。因此,通道的选择性没有得到很好的描述,这表明必须应用更精确的计算模型来模拟离子通过真核Na通道的传导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f4e/11713869/366aea770999/bi4c00664_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验