Park Haesung, LeBrun Thomas W
Physical Measurement Laboratory, National Institute of Standards and Technology.
Physical Measurement Laboratory, National Institute of Standards and Technology;
J Vis Exp. 2017 Feb 5(120):54862. doi: 10.3791/54862.
We demonstrate a method to trap a selected dielectric microparticle in air using radiation pressure from a single-beam gradient optical trap. Randomly scattered dielectric microparticles adhered to a glass substrate are momentarily detached using ultrasonic vibrations generated by a piezoelectric transducer (PZT). Then, the optical beam focused on a selected particle lifts it up to the optical trap while the vibrationally excited microparticles fall back to the substrate. A particle may be trapped at the nominal focus of the trapping beam or at a position above the focus (referred to here as the levitation position) where gravity provides the restoring force. After the measurement, the trapped particle can be placed at a desired position on the substrate in a controlled manner. In this protocol, an experimental procedure for selective optical trap loading in air is outlined. First, the experimental setup is briefly introduced. Second, the design and fabrication of a PZT holder and a sample enclosure are illustrated in detail. The optical trap loading of a selected microparticle is then demonstrated with step-by-step instructions including sample preparation, launching into the trap, and use of electrostatic force to excite particle motion in the trap and measure charge. Finally, we present recorded particle trajectories of Brownian and ballistic motions of a trapped microparticle in air. These trajectories can be used to measure stiffness or to verify optical alignment through time domain and frequency domain analysis. Selective trap loading enables optical tweezers to track a particle and its changes over repeated trap loadings in a reversible manner, thereby enabling studies of particle-surface interaction.
我们展示了一种利用单光束梯度光阱的辐射压力在空气中捕获选定介电微粒的方法。附着在玻璃基板上的随机散射介电微粒,通过压电换能器(PZT)产生的超声振动暂时脱离。然后,聚焦在选定微粒上的光束将其提升到光阱中,而受振动激发的微粒则落回到基板上。微粒可能被困在捕获光束的标称焦点处,或在焦点上方的某个位置(此处称为悬浮位置),在该位置重力提供恢复力。测量完成后,可将捕获的微粒以可控方式放置在基板上的所需位置。在本方案中,概述了在空气中进行选择性光阱加载的实验程序。首先,简要介绍实验装置。其次,详细说明PZT支架和样品外壳的设计与制作。然后通过逐步说明展示选定微粒的光阱加载过程,包括样品制备、引入光阱,以及利用静电力激发微粒在光阱中的运动并测量电荷。最后,我们展示了捕获的微粒在空气中的布朗运动和弹道运动的记录轨迹。这些轨迹可用于测量刚度或通过时域和频域分析验证光学对准。选择性阱加载使光镊能够以可逆方式跟踪微粒及其在重复阱加载过程中的变化,从而能够研究微粒与表面的相互作用。