Suppr超能文献

共面苝二聚体中的准分子形成与对称性破缺电荷转移

Excimer Formation and Symmetry-Breaking Charge Transfer in Cofacial Perylene Dimers.

作者信息

Cook Rita E, Phelan Brian T, Kamire Rebecca J, Majewski Marek B, Young Ryan M, Wasielewski Michael R

机构信息

Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University , Evanston, Illinois 60208-3113, United States.

出版信息

J Phys Chem A. 2017 Mar 2;121(8):1607-1615. doi: 10.1021/acs.jpca.6b12644. Epub 2017 Feb 21.

Abstract

The use of multiple chromophores as photosensitizers for catalysts involved in energy-demanding redox reactions is often complicated by electronic interactions between the chromophores. These interchromophore interactions can lead to processes, such as excimer formation and symmetry-breaking charge separation (SB-CS), that compete with efficient electron transfer to or from the catalyst. Here, two dimers of perylene bound either directly or through a xylyl spacer to a xanthene backbone were synthesized to probe the effects of interchromophore electronic coupling on excimer formation and SB-CS using ultrafast transient absorption spectroscopy. Two time constants for excimer formation in the 1-25 ps range were observed in each dimer due to the presence of rotational isomers having different degrees of interchromophore coupling. In highly polar acetonitrile, SB-CS competes with excimer formation in the more weakly coupled isomers followed by charge recombination with τ = 72-85 ps to yield the excimer. The results of this study of perylene molecular dimers can inform the design of chromophore-catalyst systems for solar fuel production that utilize multiple perylene chromophores.

摘要

将多种发色团用作参与高能耗氧化还原反应的催化剂的光敏剂,常常因发色团之间的电子相互作用而变得复杂。这些发色团间的相互作用会导致诸如激基缔合物形成和对称破缺电荷分离(SB-CS)等过程,这些过程会与向催化剂或从催化剂进行的有效电子转移相互竞争。在此,合成了两种通过直接连接或通过一个亚二甲苯基间隔基连接到一个呫吨主链上的苝二聚体,以利用超快瞬态吸收光谱法探究发色团间电子耦合对激基缔合物形成和SB-CS的影响。由于存在具有不同程度发色团间耦合的旋转异构体,在每个二聚体中均观察到了1-25皮秒范围内激基缔合物形成的两个时间常数。在高极性乙腈中,SB-CS在耦合较弱的异构体中与激基缔合物形成相互竞争,随后以τ = 72-85皮秒的时间常数进行电荷复合以产生激基缔合物。这项关于苝分子二聚体的研究结果可为利用多个苝发色团的太阳能燃料生产发色团-催化剂体系的设计提供参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验