Suppr超能文献

VacSol:一种高通量计算机模拟流程,用于通过减法反向疫苗学预测原核病原体中的潜在治疗靶点。

VacSol: a high throughput in silico pipeline to predict potential therapeutic targets in prokaryotic pathogens using subtractive reverse vaccinology.

作者信息

Rizwan Muhammad, Naz Anam, Ahmad Jamil, Naz Kanwal, Obaid Ayesha, Parveen Tamsila, Ahsan Muhammad, Ali Amjad

机构信息

Research Center for Modelling and Simulation (RCMS), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan.

Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan.

出版信息

BMC Bioinformatics. 2017 Feb 13;18(1):106. doi: 10.1186/s12859-017-1540-0.

Abstract

BACKGROUND

With advances in reverse vaccinology approaches, a progressive improvement has been observed in the prediction of putative vaccine candidates. Reverse vaccinology has changed the way of discovery and provides a mean to propose target identification in reduced time and labour. In this regard, high throughput genomic sequencing technologies and supporting bioinformatics tools have greatly facilitated the prompt analysis of pathogens, where various predicted candidates have been found effective against certain infections and diseases. A pipeline, VacSol, is designed here based on a similar approach to predict putative vaccine candidates both rapidly and efficiently.

RESULTS

VacSol, a new pipeline introduced here, is a highly scalable, multi-mode, and configurable software designed to automate the high throughput in silico vaccine candidate prediction process for the identification of putative vaccine candidates against the proteome of bacterial pathogens. Vaccine candidates are screened using integrated, well-known and robust algorithms/tools for proteome analysis, and the results from the VacSol software are presented in five different formats by taking proteome sequence as input in FASTA file format. The utility of VacSol is tested and compared with published data and using the Helicobacter pylori 26695 reference strain as a benchmark.

CONCLUSION

VacSol rapidly and efficiently screens the whole bacterial pathogen proteome to identify a few predicted putative vaccine candidate proteins. This pipeline has the potential to save computational costs and time by efficiently reducing false positive candidate hits. VacSol results do not depend on any universal set of rules and may vary based on the provided input. It is freely available to download from: https://sourceforge.net/projects/vacsol/ .

摘要

背景

随着反向疫苗学方法的进展,在预测潜在疫苗候选物方面已观察到逐步改善。反向疫苗学改变了发现方式,并提供了一种在更短时间和更少人力的情况下进行靶点识别的手段。在这方面,高通量基因组测序技术和支持的生物信息学工具极大地促进了对病原体的快速分析,在其中发现了各种预测的候选物对某些感染和疾病有效。在此基于类似方法设计了一个流程VacSol,以快速有效地预测潜在疫苗候选物。

结果

VacSol是在此引入的一个新流程,是一种高度可扩展、多模式且可配置的软件,旨在自动化高通量计算机模拟疫苗候选物预测过程,以识别针对细菌病原体蛋白质组的潜在疫苗候选物。使用用于蛋白质组分析的集成、知名且强大的算法/工具筛选疫苗候选物,并且通过将蛋白质组序列作为FASTA文件格式的输入,以五种不同格式呈现VacSol软件的结果。以幽门螺杆菌26695参考菌株作为基准,对VacSol的效用进行了测试并与已发表的数据进行了比较。

结论

VacSol快速有效地筛选整个细菌病原体蛋白质组,以识别一些预测的潜在疫苗候选蛋白。该流程有可能通过有效减少假阳性候选命中来节省计算成本和时间。VacSol的结果不依赖于任何通用规则集,并且可能因提供的输入而异。可从以下网址免费下载:https://sourceforge.net/projects/vacsol/

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/122c/5307925/0a668642da42/12859_2017_1540_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验