Suppr超能文献

VirusImmu:一种用于病毒免疫原性预测的新型集成机器学习方法。

VirusImmu: a novel ensemble machine learning approach for viral immunogenicity prediction.

作者信息

Li Jing, Zhao Zhongpeng, Tai ChengZheng, Sun Ting, Tan Lingyun, Li Xinyu, He Wei, Li HongJun, Zhang Jing

机构信息

Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian Distirct, Beijing 100083, P. R. China.

Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, No 81 Meishan Road, Shushan District, Hefei 230032, China.

出版信息

Brief Funct Genomics. 2025 Jan 15;24. doi: 10.1093/bfgp/elaf008.

Abstract

The viruses threats provoke concerns regarding their sustained epidemic transmission, making the development of vaccines particularly important. In the prolonged and costly process of vaccine development, the most important initial step is to identify protective immunogens. Machine learning (ML) approaches are productive in analyzing big data such as microbial proteomes, and can remarkably reduce the cost of experimental work in developing novel vaccine candidates. We intensively evaluated the B cell epitope immunogenicity prediction power of eight commonly-used ML methods by random sampling cross validation on a large dataset consisting of known viral immunogens and non-immunogens we manually curated from the public domain. Extreme Gradient Boosting, K Nearest Neighbours, and Random Forest) showed the strongest predictive power. We then proposed a novel soft-voting based ensemble approach (VirusImmu), which demonstrated a powerful and stable capability for viral immunogenicity prediction across the test set and external test set irrespective of protein sequence length. VirusImmu was successfully applied to facilitate identifying linear B cell epitopes against African Swine Fever Virus as confirmed by indirect ELISA in vitro. In short, VirusImmu exhibited tremendous potentials in predicting immunogenicity of viral protein segments. It is freely accessible at https://github.com/zhangjbig/VirusImmu.

摘要

病毒威胁引发了人们对其持续流行传播的担忧,这使得疫苗的研发尤为重要。在漫长且成本高昂的疫苗研发过程中,最重要的初始步骤是确定保护性免疫原。机器学习(ML)方法在分析诸如微生物蛋白质组等大数据方面成效显著,并且能够显著降低开发新型候选疫苗的实验工作成本。我们通过对一个由我们从公共领域手动整理的已知病毒免疫原和非免疫原组成的大型数据集进行随机抽样交叉验证,深入评估了八种常用ML方法对B细胞表位免疫原性的预测能力。极端梯度提升、K近邻和随机森林显示出最强的预测能力。然后,我们提出了一种基于软投票的新型集成方法(VirusImmu),该方法在测试集和外部测试集中均展示出强大且稳定的病毒免疫原性预测能力,而与蛋白质序列长度无关。VirusImmu已成功应用于协助鉴定针对非洲猪瘟病毒的线性B细胞表位,体外间接ELISA证实了这一点。简而言之,VirusImmu在预测病毒蛋白片段的免疫原性方面展现出巨大潜力。可通过https://github.com/zhangjbig/VirusImmu免费获取该方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c682/12051847/b9a27fe9b5a3/elaf008f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验