Suppr超能文献

NET:一种用于网络数据矢量化和检验的新框架。

NET: a new framework for the vectorization and examination of network data.

作者信息

Lasser Jana, Katifori Eleni

机构信息

Max Planck Institute for Dynamics and Self-Organization, Göttingen, Am Fassberg 17, Göttingen, 37077 Germany.

Department of Physics & Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, 19104-6396 PA USA.

出版信息

Source Code Biol Med. 2017 Feb 8;12:4. doi: 10.1186/s13029-017-0064-3. eCollection 2017.

Abstract

BACKGROUND

The analysis of complex networks both in general and in particular as pertaining to real biological systems has been the focus of intense scientific attention in the past and present. In this paper we introduce two tools that provide fast and efficient means for the processing and quantification of biological networks like tracheoles or leaf venation patterns: the Network Extraction Tool () to extract data and the Graph-edit-GUI () to visualize and modify networks.

RESULTS

NET is especially designed for high-throughput semi-automated analysis of biological datasets containing digital images of networks. The framework starts with the segmentation of the image and then proceeds to vectorization using methodologies from optical character recognition. After a series of steps to clean and improve the quality of the extracted data the framework produces a graph in which the network is represented only by its nodes and neighborhood-relations. The final output contains information about the adjacency matrix of the graph, the width of the edges and the positions of the nodes in space. also provides tools for statistical analysis of the network properties, such as the number of nodes or total network length. Other, more complex metrics can be calculated by importing the vectorized network to specialized network analysis packages. is designed to facilitate manual correction of non-planar networks as these may contain artifacts or spurious junctions due to branches crossing each other. It is tailored for but not limited to the processing of networks from microscopy images of tracheoles.

CONCLUSION

The networks extracted by closely approximate the network depicted in the original image. is fast, yields reproducible results and is able to capture the full geometry of the network, including curved branches. Additionally allows easy handling and visualization of the networks.

摘要

背景

复杂网络的分析,总体而言,特别是涉及真实生物系统的复杂网络分析,一直是过去和现在科学界密切关注的焦点。在本文中,我们介绍了两种工具,它们为处理和量化气管或叶脉模式等生物网络提供了快速有效的方法:用于提取数据的网络提取工具(NET)和用于可视化和修改网络的图形编辑GUI(Graph-edit-GUI)。

结果

NET特别设计用于对包含网络数字图像的生物数据集进行高通量半自动分析。该框架从图像分割开始,然后使用光学字符识别方法进行矢量化。经过一系列清理和提高提取数据质量的步骤后,该框架生成一个图形,其中网络仅由其节点和邻域关系表示。最终输出包含有关图形邻接矩阵、边的宽度和节点在空间中的位置的信息。Graph-edit-GUI还提供了用于网络属性统计分析的工具,例如节点数量或网络总长度。通过将矢量化网络导入专门的网络分析软件包,可以计算其他更复杂的指标。Graph-edit-GUI旨在便于手动校正非平面网络,因为这些网络可能由于分支相互交叉而包含伪影或虚假连接。它专为处理气管的显微镜图像中的网络而设计,但不限于该领域。

结论

NET提取的网络与原始图像中描绘的网络非常接近。NET速度快,结果可重复,能够捕捉网络的完整几何形状,包括弯曲的分支。此外,Graph-edit-GUI允许轻松处理和可视化网络。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4723/5299731/d4550dad5d6a/13029_2017_64_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验