Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States.
Weill Cornell Medical College , New York, New York 10065, United States.
Anal Chem. 2017 Jan 17;89(2):1073-1077. doi: 10.1021/acs.analchem.6b04091. Epub 2017 Jan 4.
Electronic and biological applications of carbon nanotubes can be highly dependent on the species (chirality) of nanotube, purity, and concentration. Existing bulk methods, such as absorbance spectroscopy, can quantify sp carbon based on spectral bands, but nanotube length distribution, defects, and carbonaceous impurities can complicate quantification of individual particles. We present a general method to relate the optical density of a photoluminescent nanotube sample to the number of individual nanotubes. By acquiring 3-dimensional images of nanotubes embedded in a gel matrix with a reducing environment, we quantified all emissive nanotubes in a volume. Via spectral imaging, we assessed structural impurities and precisely determined molar concentrations of the (8,6) and (9,4) nanotube species. We developed an approach to obtain the molarity of any structurally enriched semiconducting single-walled carbon nanotube preparation on a per-nanotube basis.
碳纳米管的电子和生物应用可能高度依赖于纳米管的种类(手性)、纯度和浓度。现有的批量方法,如吸收光谱法,可以根据光谱带定量 sp 碳,但纳米管长度分布、缺陷和碳质杂质会使单个颗粒的定量变得复杂。我们提出了一种将光致发光纳米管样品的光密度与单个纳米管数量相关联的通用方法。通过对嵌入凝胶基质中的纳米管进行三维成像,并在还原环境中,我们对整个体积中的所有发光纳米管进行了量化。通过光谱成像,我们评估了结构杂质,并精确确定了(8,6)和(9,4)纳米管的摩尔浓度。我们开发了一种方法,可以根据每个纳米管的基础上获得任何结构富化半导体单壁碳纳米管制备的摩尔浓度。