Suppr超能文献

多能性丧失与获得过程中的代谢重塑。

Metabolic remodeling during the loss and acquisition of pluripotency.

作者信息

Mathieu Julie, Ruohola-Baker Hannele

机构信息

Department of Biochemistry, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.

Department of Biochemistry, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA

出版信息

Development. 2017 Feb 15;144(4):541-551. doi: 10.1242/dev.128389.

Abstract

Pluripotent cells from the early stages of embryonic development have the unlimited capacity to self-renew and undergo differentiation into all of the cell types of the adult organism. These properties are regulated by tightly controlled networks of gene expression, which in turn are governed by the availability of transcription factors and their interaction with the underlying epigenetic landscape. Recent data suggest that, perhaps unexpectedly, some key epigenetic marks, and thereby gene expression, are regulated by the levels of specific metabolites. Hence, cellular metabolism plays a vital role beyond simply the production of energy, and may be involved in the regulation of cell fate. In this Review, we discuss the metabolic changes that occur during the transitions between different pluripotent states both and , including during reprogramming to pluripotency and the onset of differentiation, and we discuss the extent to which distinct metabolites might regulate these transitions.

摘要

胚胎发育早期的多能细胞具有无限自我更新能力,并能分化为成体生物的所有细胞类型。这些特性受严格控制的基因表达网络调控,而该网络又受转录因子的可用性及其与潜在表观遗传格局的相互作用支配。最近的数据表明,或许出人意料的是,一些关键的表观遗传标记以及基因表达受特定代谢物水平的调控。因此,细胞代谢的作用不仅限于简单的能量产生,还可能参与细胞命运的调控。在本综述中,我们讨论了不同多能状态之间转换过程中发生的代谢变化,包括重编程为多能性以及分化开始阶段的代谢变化,并探讨了不同代谢物对这些转换的调控程度。

相似文献

1
Metabolic remodeling during the loss and acquisition of pluripotency.
Development. 2017 Feb 15;144(4):541-551. doi: 10.1242/dev.128389.
2
Epigenetic metabolites license stem cell states.
Curr Top Dev Biol. 2020;138:209-240. doi: 10.1016/bs.ctdb.2020.02.003. Epub 2020 Mar 21.
3
Combinatorial metabolism drives the naive to primed pluripotent chromatin landscape.
Exp Cell Res. 2020 Apr 15;389(2):111913. doi: 10.1016/j.yexcr.2020.111913. Epub 2020 Feb 19.
5
Ground rules of the pluripotency gene regulatory network.
Nat Rev Genet. 2017 Mar;18(3):180-191. doi: 10.1038/nrg.2016.156. Epub 2017 Jan 3.
6
Metabolic Reprogramming of Stem Cell Epigenetics.
Cell Stem Cell. 2015 Dec 3;17(6):651-662. doi: 10.1016/j.stem.2015.11.012.
7
Epigenetics in embryonic stem cells: regulation of pluripotency and differentiation.
Cell Tissue Res. 2008 Jan;331(1):23-9. doi: 10.1007/s00441-007-0536-x. Epub 2007 Nov 15.
8
Establishing the human naïve pluripotent state.
Curr Opin Genet Dev. 2015 Oct;34:35-45. doi: 10.1016/j.gde.2015.07.005. Epub 2015 Aug 24.
9
10
Transcriptional Control of Somatic Cell Reprogramming.
Trends Cell Biol. 2016 Apr;26(4):272-288. doi: 10.1016/j.tcb.2015.12.003. Epub 2016 Jan 15.

引用本文的文献

2
Prolactin drives cortical neuron maturation and dendritic development during murine embryonic stem cell differentiation.
Front Cell Dev Biol. 2025 Feb 26;13:1551090. doi: 10.3389/fcell.2025.1551090. eCollection 2025.
3
Chromatin Modifier EP400 Regulates Oocyte Quality and Zygotic Genome Activation in Mice.
Adv Sci (Weinh). 2024 May;11(20):e2308018. doi: 10.1002/advs.202308018. Epub 2024 Mar 17.
4
Next-generation direct reprogramming.
Front Cell Dev Biol. 2024 Feb 2;12:1343106. doi: 10.3389/fcell.2024.1343106. eCollection 2024.
5
Epigenomic states contribute to coordinated allelic transcriptional bursting in iPSC reprogramming.
Life Sci Alliance. 2024 Feb 6;7(4). doi: 10.26508/lsa.202302337. Print 2024 Apr.
6
Amino acid intake strategies define pluripotent cell states.
Nat Metab. 2024 Jan;6(1):127-140. doi: 10.1038/s42255-023-00940-6. Epub 2024 Jan 3.
7
Metabolic switches during development and regeneration.
Development. 2023 Oct 15;150(20). doi: 10.1242/dev.202008. Epub 2023 Oct 26.
9
Repair of airway epithelia requires metabolic rewiring towards fatty acid oxidation.
Nat Commun. 2023 Feb 13;14(1):721. doi: 10.1038/s41467-023-36352-z.

本文引用的文献

1
Formative pluripotency: the executive phase in a developmental continuum.
Development. 2017 Feb 1;144(3):365-373. doi: 10.1242/dev.142679.
2
PHB Associates with the HIRA Complex to Control an Epigenetic-Metabolic Circuit in Human ESCs.
Cell Stem Cell. 2017 Feb 2;20(2):274-289.e7. doi: 10.1016/j.stem.2016.11.002. Epub 2016 Dec 8.
3
Inhibition of mTOR induces a paused pluripotent state.
Nature. 2016 Dec 1;540(7631):119-123. doi: 10.1038/nature20578. Epub 2016 Nov 23.
4
Wnt/β-catenin signaling promotes self-renewal and inhibits the primed state transition in naïve human embryonic stem cells.
Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):E6382-E6390. doi: 10.1073/pnas.1613849113. Epub 2016 Oct 3.
5
Glycolytic Metabolism Plays a Functional Role in Regulating Human Pluripotent Stem Cell State.
Cell Stem Cell. 2016 Oct 6;19(4):476-490. doi: 10.1016/j.stem.2016.08.008. Epub 2016 Sep 8.
6
A developmental coordinate of pluripotency among mice, monkeys and humans.
Nature. 2016 Sep 1;537(7618):57-62. doi: 10.1038/nature19096. Epub 2016 Aug 24.
7
Psat1-Dependent Fluctuations in α-Ketoglutarate Affect the Timing of ESC Differentiation.
Cell Metab. 2016 Sep 13;24(3):494-501. doi: 10.1016/j.cmet.2016.06.014. Epub 2016 Jul 28.
8
α-Ketoglutarate Accelerates the Initial Differentiation of Primed Human Pluripotent Stem Cells.
Cell Metab. 2016 Sep 13;24(3):485-493. doi: 10.1016/j.cmet.2016.07.002. Epub 2016 Jul 28.
9
Molecular Criteria for Defining the Naive Human Pluripotent State.
Cell Stem Cell. 2016 Oct 6;19(4):502-515. doi: 10.1016/j.stem.2016.06.011. Epub 2016 Jul 14.
10
LIN28 Regulates Stem Cell Metabolism and Conversion to Primed Pluripotency.
Cell Stem Cell. 2016 Jul 7;19(1):66-80. doi: 10.1016/j.stem.2016.05.009. Epub 2016 Jun 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验