Hoang Ha Thi, Schlager Max A, Carter Andrew P, Bullock Simon L
Division of Cell Biology, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom.
Division of Structural Studies, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom.
Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):E1597-E1606. doi: 10.1073/pnas.1620141114. Epub 2017 Feb 14.
Mutations in the human gene are associated with neurological diseases. encodes the heavy chain of cytoplasmic dynein-1, a 1.4-MDa motor complex that traffics organelles, vesicles, and macromolecules toward microtubule minus ends. The effects of the mutations on dynein motility, and consequently their links to neuropathology, are not understood. Here, we address this issue using a recombinant expression system for human dynein coupled to single-molecule resolution in vitro motility assays. We functionally characterize 14 mutations identified in humans diagnosed with malformations in cortical development (MCD) or spinal muscular atrophy with lower extremity predominance (SMALED), as well as three mutations that cause motor and sensory defects in mice. Two of the human mutations, R1962C and H3822P, strongly interfere with dynein's core mechanochemical properties. The remaining mutations selectively compromise the processive mode of dynein movement that is activated by binding to the accessory complex dynactin and the cargo adaptor Bicaudal-D2 (BICD2). Mutations with the strongest effects on dynein motility in vitro are associated with MCD. The vast majority of mutations do not affect binding of dynein to dynactin and BICD2 and are therefore expected to result in linkage of cargos to dynein-dynactin complexes that have defective long-range motility. This observation offers an explanation for the dominant effects of mutations in vivo. Collectively, our results suggest that compromised processivity of cargo-motor assemblies contributes to human neurological disease and provide insight into the influence of different regions of the heavy chain on dynein motility.
人类基因中的突变与神经疾病相关。该基因编码胞质动力蛋白-1的重链,胞质动力蛋白-1是一种1.4兆道尔顿的运动复合体,可将细胞器、囊泡和大分子向微管负端运输。这些突变对动力蛋白运动的影响以及它们与神经病理学的联系尚不清楚。在这里,我们使用人类动力蛋白的重组表达系统结合体外运动分析中的单分子分辨率来解决这个问题。我们对在被诊断患有皮质发育畸形(MCD)或下肢为主型脊髓性肌萎缩症(SMALED)的人类中鉴定出的14种突变以及在小鼠中导致运动和感觉缺陷的三种突变进行了功能表征。其中两种人类突变,R1962C和H3822P,强烈干扰动力蛋白的核心机械化学特性。其余突变选择性地损害了动力蛋白运动的持续性模式,这种模式通过与辅助复合体动力肌动蛋白和货物适配器双尾-D2(BICD2)结合而被激活。在体外对动力蛋白运动影响最强的突变与MCD相关。绝大多数突变不影响动力蛋白与动力肌动蛋白和BICD2的结合,因此预计会导致货物与具有缺陷的长距离运动的动力蛋白-动力肌动蛋白复合体相连。这一观察结果为体内突变的显性效应提供了解释。总的来说,我们的结果表明货物-运动蛋白组装体的持续性受损导致了人类神经疾病,并深入了解了重链不同区域对动力蛋白运动的影响。