Olenick Mara A, Tokito Mariko, Boczkowska Malgorzata, Dominguez Roberto, Holzbaur Erika L F
From the Department of Physiology and Pennsylvania Muscle Institute and Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.
From the Department of Physiology and Pennsylvania Muscle Institute and.
J Biol Chem. 2016 Aug 26;291(35):18239-51. doi: 10.1074/jbc.M116.738211. Epub 2016 Jun 30.
Cytoplasmic dynein drives the majority of minus end-directed vesicular and organelle motility in the cell. However, it remains unclear how dynein is spatially and temporally regulated given the variety of cargo that must be properly localized to maintain cellular function. Recent work has suggested that adaptor proteins provide a mechanism for cargo-specific regulation of motors. Of particular interest, studies in fungal systems have implicated Hook proteins in the regulation of microtubule motors. Here we investigate the role of mammalian Hook proteins, Hook1 and Hook3, as potential motor adaptors. We used optogenetic approaches to specifically recruit Hook proteins to organelles and observed rapid transport of peroxisomes to the perinuclear region of the cell. This rapid and efficient translocation of peroxisomes to microtubule minus ends indicates that mammalian Hook proteins activate dynein rather than kinesin motors. Biochemical studies indicate that Hook proteins interact with both dynein and dynactin, stabilizing the formation of a supramolecular complex. Complex formation requires the N-terminal domain of Hook proteins, which resembles the calponin-homology domain of end-binding (EB) proteins but cannot bind directly to microtubules. Single-molecule motility assays using total internal reflection fluorescence microscopy indicate that both Hook1 and Hook3 effectively activate cytoplasmic dynein, inducing longer run lengths and higher velocities than the previously characterized dynein activator bicaudal D2 (BICD2). Together, these results suggest that dynein adaptors can differentially regulate dynein to allow for organelle-specific tuning of the motor for precise intracellular trafficking.
胞质动力蛋白驱动细胞内大多数向微管负端的囊泡和细胞器运动。然而,鉴于必须正确定位以维持细胞功能的各种货物,动力蛋白如何在空间和时间上受到调节仍不清楚。最近的研究表明,衔接蛋白为货物特异性调节马达提供了一种机制。特别值得关注的是,在真菌系统中的研究表明,Hook蛋白参与微管马达的调节。在这里,我们研究了哺乳动物Hook蛋白Hook1和Hook3作为潜在马达衔接蛋白的作用。我们使用光遗传学方法将Hook蛋白特异性招募到细胞器上,并观察到过氧化物酶体迅速运输到细胞的核周区域。过氧化物酶体向微管负端的这种快速而有效的转运表明,哺乳动物Hook蛋白激活的是动力蛋白而不是驱动蛋白马达。生化研究表明,Hook蛋白与动力蛋白和动力蛋白激活蛋白都相互作用,稳定超分子复合物的形成。复合物的形成需要Hook蛋白的N端结构域,该结构域类似于末端结合(EB)蛋白的钙调蛋白同源结构域,但不能直接结合微管。使用全内反射荧光显微镜的单分子运动分析表明,Hook1和Hook3都能有效激活胞质动力蛋白,与之前鉴定的动力蛋白激活剂双尾D2(BICD2)相比,能诱导更长的运行长度和更高的速度。总之,这些结果表明,动力蛋白衔接蛋白可以差异性地调节动力蛋白,从而对马达进行细胞器特异性调节,以实现精确的细胞内运输。