Departamento de Química Inorgánica, Universidad de Granada, Av. Fuentenueva S/N, 18071 Granada, Spain.
Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Ctra. de Utrera, Km. 1, 41013 Sevilla, Spain.
Nat Commun. 2017 Feb 15;8:14457. doi: 10.1038/ncomms14457.
The widespread emissions of toxic gases from fossil fuel combustion represent major welfare risks. Here we report the improvement of the selective sulfur dioxide capture from flue gas emissions of isoreticular nickel pyrazolate metal organic frameworks through the sequential introduction of missing-linker defects and extra-framework barium cations. The results and feasibility of the defect pore engineering carried out are quantified through a combination of dynamic adsorption experiments, X-ray diffraction, electron microscopy and density functional theory calculations. The increased sulfur dioxide adsorption capacities and energies as well as the sulfur dioxide/carbon dioxide partition coefficients values of defective materials compared to original non-defective ones are related to the missing linkers enhanced pore accessibility and to the specificity of sulfur dioxide interactions with crystal defect sites. The selective sulfur dioxide adsorption on defects indicates the potential of fine-tuning the functional properties of metal organic frameworks through the deliberate creation of defects.
化石燃料燃烧产生的有毒气体的广泛排放对福利构成了重大风险。在这里,我们报告了通过顺序引入缺失配体缺陷和骨架外钡阳离子,从同构镍吡唑啉金属有机骨架的烟道气排放中选择性捕获二氧化硫的改进。通过动态吸附实验、X 射线衍射、电子显微镜和密度泛函理论计算的结合,对所进行的缺陷孔工程的结果和可行性进行了量化。与原始非缺陷材料相比,缺陷材料的二氧化硫吸附容量和能量以及二氧化硫/二氧化碳分配系数值的增加与增强的孔可及性有关,与晶体缺陷部位与二氧化硫相互作用的特异性有关。对缺陷的选择性二氧化硫吸附表明,通过故意制造缺陷,可以对金属有机骨架的功能特性进行精细调整。