Tatay Sergio, Martínez-Giménez Sonia, Rubio-Gaspar Ana, Gómez-Oliveira Eloy, Castells-Gil Javier, Dong Zhuoya, Mayoral Álvaro, Almora-Barrios Neyvis, M Padial Natalia, Martí-Gastaldo Carlos
Instituto de Ciencia Molecular, Universitat de València, Paterna, 46980, Spain.
School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, P. R. China.
Nat Commun. 2023 Oct 31;14(1):6962. doi: 10.1038/s41467-023-41936-w.
Changing the perception of defects as imperfections in crystalline frameworks into correlated domains amenable to chemical control and targeted design might offer opportunities for the design of porous materials with superior performance or distinctive behavior in catalysis, separation, storage, or guest recognition. From a chemical standpoint, the establishment of synthetic protocols adapted to control the generation and growth of correlated disorder is crucial to consider defect engineering a practicable route towards adjusting framework function. By using UiO-66 as experimental platform, we systematically explored the framework chemical space of the corresponding defective materials. Periodic disorder arising from controlled generation and growth of missing cluster vacancies can be chemically controlled by the relative concentration of linker and modulator, which has been used to isolate a crystallographically pure "disordered" reo phase. Cs-corrected scanning transmission electron microscopy is used to proof the coexistence of correlated domains of missing linker and cluster vacancies, whose relative sizes are fixed by the linker concentration. The relative distribution of correlated disorder in the porosity and catalytic activity of the material reveals that, contrarily to the common belief, surpassing a certain defect concentration threshold can have a detrimental effect.
将晶体框架中作为不完美之处的缺陷观念转变为适合化学控制和定向设计的相关区域,可能为设计在催化、分离、存储或客体识别方面具有卓越性能或独特行为的多孔材料提供机会。从化学角度来看,建立适用于控制相关无序的产生和生长的合成方案,对于将缺陷工程视为调整框架功能的可行途径至关重要。通过使用UiO-66作为实验平台,我们系统地探索了相应缺陷材料的框架化学空间。由缺失簇空位的受控产生和生长引起的周期性无序可以通过连接体和调节剂的相对浓度进行化学控制,这已被用于分离出晶体学上纯的“无序”reo相。Cs校正扫描透射电子显微镜用于证明缺失连接体和簇空位的相关区域的共存,其相对尺寸由连接体浓度固定。材料孔隙率和催化活性中相关无序的相对分布表明,与普遍看法相反,超过一定的缺陷浓度阈值可能会产生不利影响。