Ma Yujie, Lu Wanpeng, Han Xue, Chen Yinlin, da Silva Ivan, Lee Daniel, Sheveleva Alena M, Wang Zi, Li Jiangnan, Li Weiyao, Fan Mengtian, Xu Shaojun, Tuna Floriana, McInnes Eric J L, Cheng Yongqiang, Rudić Svemir, Manuel Pascal, Frogley Mark D, Ramirez-Cuesta Anibal J, Schröder Martin, Yang Sihai
Department of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Chilton OX11 0QX, U.K.
J Am Chem Soc. 2022 May 18;144(19):8624-8632. doi: 10.1021/jacs.2c00952. Epub 2022 May 9.
The presence of active sites in metal-organic framework (MOF) materials can control and affect their performance significantly in adsorption and catalysis. However, revealing the interactions between the substrate and active sites in MOFs at atomic precision remains a challenging task. Here, we report the direct observation of binding of NH in a series of UiO-66 materials containing atomically dispersed defects and open Cu(I) and Cu(II) sites. While all MOFs in this series exhibit similar surface areas (1111-1135 m g), decoration of the -OH site in UiO-66-defect with Cu(II) results in a 43% enhancement of the isothermal uptake of NH at 273 K and 1.0 bar from 11.8 in UiO-66-defect to 16.9 mmol g in UiO-66-Cu. A 100% enhancement of dynamic adsorption of NH at a concentration level of 630 ppm from 2.07 mmol g in UiO-66-defect to 4.15 mmol g in UiO-66-Cu at 298 K is observed. neutron powder diffraction, inelastic neutron scattering, and electron paramagnetic resonance, solid-state nuclear magnetic resonance, and infrared spectroscopies, coupled with modeling reveal that the enhanced NH uptake in UiO-66-Cu originates from a {Cu(II)···NH} interaction, with a reversible change in geometry at Cu(II) from near-linear to trigonal coordination. This work represents the first example of structural elucidation of NH binding in MOFs containing open metal sites and will inform the design of new efficient MOF sorbents by targeted control of active sites for NH capture and storage.
金属有机框架(MOF)材料中活性位点的存在能够显著控制和影响其在吸附及催化方面的性能。然而,在原子精度上揭示MOF中底物与活性位点之间的相互作用仍然是一项具有挑战性的任务。在此,我们报告了在一系列含有原子分散缺陷以及开放的Cu(I)和Cu(II)位点的UiO - 66材料中对NH结合的直接观察结果。虽然该系列中的所有MOF都表现出相似的表面积(1111 - 1135 m²/g),但用Cu(II)修饰UiO - 66 - 缺陷中的 - OH位点会导致在273 K和1.0 bar下NH的等温吸附量从UiO - 66 - 缺陷中的11.8 mmol/g提高43%,达到UiO - 66 - Cu中的16.9 mmol/g。在298 K下,观察到在630 ppm浓度水平下NH的动态吸附量从UiO - 66 - 缺陷中的2.07 mmol/g提高100%,达到UiO - 66 - Cu中的4.15 mmol/g。中子粉末衍射、非弹性中子散射、电子顺磁共振、固态核磁共振和红外光谱,结合建模表明,UiO - 66 - Cu中NH吸附增强源于{Cu(II)···NH}相互作用,Cu(II)处的几何结构从近线性到三角配位发生了可逆变化。这项工作代表了在含有开放金属位点的MOF中对NH结合进行结构解析的首个实例,并将通过有针对性地控制用于NH捕获和存储的活性位点,为新型高效MOF吸附剂的设计提供参考。